970 resultados para Solar heating


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowing how to design a heating system that will work mechanically is quite different from knowling how to design a system that users perceive as responsive to their domestic practices and values. In this chapter, social anthropologist Henning argues that the challenge for designers involved in the development or marketing of green buildings with heating systems that are based on renewable sources of energy is to see things from the perspective of those who are supposed to live in these buildings. The chapter focuses on three culture-specific aspects of Swedish households and single-family houses: perceptions of house and home, of private and public space, and of male and female space. Through these three angles, some clues are given as to how design, performance and location of solar and bio-pellet heating systems could be made to resonate with predominant experiences, habits and ways of thinking among both men and women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A thermal energy store corrects the misalignment of heating demand in the winter relative to solar thermal energy gathered in the summer. This thesis reviews the viability of a solar charged hot water tank thermal energy store for a school at latitude 56.25N, longitude -120.85W

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research was carried out by studying possible renovation of a two-storey detached multifamily building by using passive solar design options in a cold climate in Borlänge, Sweden where the heating Degree Days are 4451 (base 20°C). Borlänge`s housing company, Tunabyggen, plans to renovate the project house located inthe multicultural district, Jakobsgårdarna. The goal of the thesis was to suggest a redesign of the current building, decrease the heating energy use, by applying passive solar design and control strategies, in a most reasonable way. In addition ensure a better thermal comfort for the tenants in the dwellings. Literatures have been studied, from which can be inferred that passive design should be abasic design consideration for all housing constructions, because it has advantages to ensure thermal comfort, and reduce the energy use. In addition further savings can be achieved applying different types of control strategies, from which the house will be more personalized, and better adapted to the user’s needs.The proposed method is based on simulations by using TRNSYS software. First a proper building model was set up, which represents the current state of the project building. Then the thermal insulation and the windows were upgraded, based on today's building regulations. The developments of the passive solar options were accomplished in two steps. First of all the relevant basic passive design elements were considered, then those advantages were compared to the advantages of applying new conventional thermostat, and shading control strategies.The results show that there is significant potential with the different types of passive solar design; their usage depends primarily on the location of the site as well as the orientation of the project building. Applying the control strategies, such as thermostat, and shading control, along the thermal insulation upgrade, may lead to significant energy savings (around 40 %), by comparison to the reference building without any upgrade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thirty years ago in Australia, there was a significant research, development and demonstration programme in solar industrial process heating (SIPH). This activity was led principally by the Commonwealth Science and Industrial Research Organisation, the country’s main scientific research body. Other state government bodies also funded demonstration projects. Today, there is very little SIPH activity at any level in Australia. The contrast with the progress in other renewable energy technologies like wind and solar photovoltaic systems is striking. While the implementation of these technologies has progressed, SIPH has gone backwards. If Australia is to decarbonise its economy at the rate required, a massive deployment of solar thermal technology in those industries which use large quantities of low temperature hot water is also required. Recent developments nationally and internationally may rekindle new applications of solar thermal energy use by industry. This paper reviews the past achievements in SIPH in Australia and describes the lessons learned in order to better prepare for any new wave of SIPH activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian National Electricity Conservation Program - PROCEL - runs regular surveys in the electric-energy-consumption market. These studies are used as valuable data to better plan the actions of this program. These data also evaluate the program's performance by identifying the level of penetration of the most efficient electric equipment within the residential sector. PROCEL's main lines of action is to promote and make available the most efficient technologies. Based on the results from the latest survey, it is estimated that 24% of the electric-energy consumption of the residential sector is used by electric shower devices, which instantaneously heat the water that flows through them, normally using an electric resistance of 5 kW. These are an important factor in a country where electric-heating devices are present in about 73% of Brazilian households. Keeping that in mind, the purpose of this work is to present the main results of the Brazilian Solar-Water-Heating-Systems Evaluation, finished in 2010, where 535 installations were visited and more than 50 researchers from different universities participated in the project. Moreover, seven Brazilian cities were selected to be studied. The information was collected from field research and statistically treated. The collected information focused on the adequacy of the project to the household, installation, operation and life cycle of the systems, as well as the users' satisfaction level. Technical questionnaires were developed to summarize all the required information, such as a Web site designed to organize and manage the data collected and a Matlab application that performed the dimensioning and F-chart systems evaluation. Quality indicators were created through a full system monitoring, with thermographic analysis and evaluation of shading influence at the system's efficiency, using the Ecotect software.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DOE Division of Solar Energy Contract No. E-(40-1)-5136.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work, the more important parameters of the heat pump system and of solar assisted heat pump systems were analysed in a quantitative way. Ideal and real Rankine cycles applied to the heat pump, with and without subcooling and superheating were studied using practical recommended values for their thermodynamics parameters. Comparative characteristics of refrigerants here analysed looking for their applicability in heat pumps for domestic heating and their effect in the performance of the system. Curves for the variation of the coefficient of performance as a function of condensing and evaporating temperatures were prepared for R12. Air, water and earth as low-grade heat sources and basic heat pump design factors for integrated heat pumps and thermal stores and for solar assisted heat pump-series, parallel and dual-systems were studied. The analysis of the relative performance of these systems demonstrated that the dual system presents advantages in domestic applications. An account of energy requirements for space and hater heating in the domestic sector in the O.K. is presented. The expected primary energy savings by using heat pumps to provide for the heating demand of the domestic sector was found to be of the order of 7%. The availability of solar energy in the U.K. climatic conditions and the characteristics of the solar radiation here studied. Tables and graphical representations in order to calculate the incident solar radiation over a tilted roof were prepared and are given in this study in section IV. In order to analyse and calculate the heating load for the system, new mathematical and graphical relations were developed in section V. A domestic space and water heating system is described and studied. It comprises three main components: a solar radiation absorber, the normal roof of a house, a split heat pump and a thermal store. A mathematical study of the heat exchange characteristics in the roof structure was done. This permits to evaluate the energy collected by the roof acting as a radiation absorber and its efficiency. An indication of the relative contributions from the three low-grade sources: ambient air, solar boost and heat loss from the house to the roof space during operation is given in section VI, together with the average seasonal performance and the energy saving for a prototype system tested at the University of Aston. The seasonal performance as found to be 2.6 and the energy savings by using the system studied 61%. A new store configuration to reduce wasted heat losses is also discussed in section VI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presented work is related to the use of solar energy for the needs of heating and electricity for a single house located in Poland. Electricity will provided by energy conversion in the turbine by means of Organic Rankine Cycle (ORC), in which the operating medium (water heated in solar collector) is heating refrigerator in the heating exchanger. The solar installation is integrated with heat accumulator and wood boiler, which is used in the situation that collector is not enough to fill requirements of thermal comfort. There are chosen also all the necessary components of the system. In the work is also performed the economic assessment, by F chart method, to evaluate the profitability of the project, taking into total costs and savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A limiting step to roll-to-roll production of dye-sensitized solar cells on metals is TiO2 sintering (10-30 min). Near infrared (NIR) heating is a novel process innovation which directly heats titanium substrates giving rapid binder removal and sintering. NIR heating (for 12.5 s) at varying power gave titanium temperatures of 545, 685 and 817 degrees Celsius yielding cells with efficiencies of 2.9, 2.8 and 2.5%. Identical cells prepared in a conventional oven (1800 s) at 500, 600 and 800 degrees Celsius gave 2.9, 2.6 and 0.2% efficiency. NIR sintering is ultrafast and has a wide process window making it ideal for rapid manufacturing on metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In face of the increasing concern on global warming and climate change, the interests in the utilization of solar energy for building operation are also rapidly growing. In this paper, the importance of using renewable energy in building operations is first discussed. The potential use of solar energy is then reviewed. Possible applications of solar energy in building operation are also discussed, including the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling and building-integrated photovoltaics. Finally, the research activities in the utilization of solar energy for space cooling at QUT are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solar assisted heat pump is used for different applications, such as, water heating, drying and air conditioning. The unglazed evaporator-collector enables to absorb both solar energy and ambient energy due to low operating temperature. Three different systems are described: solar assisted heat pump system for hot water using an unglazed evaporator collector; solar assisted heat pump for hot water and drying, where evaporator collector and air collector are used; an integrated solar heat pump system making use of solar and ambient energy, and air-con waste heat. Unlike conventional collector, evaporator collector was found to have higher efficiency, 80% to 90%, and the coefficient of performance attained a value as high as 8.0. The integrated system leads to a reduction of global warming, as it uses solar energy, ambient energy and air-con waste heat.