968 resultados para Soil science -- Catalonia -- Sant Gregori
Resumo:
In agroecosystems, most isotopic investigations of NO3- involve the use of tracers that are artificially enriched in 15N. Although the dual isotope composition of NO3-— d15N and d18O is especially beneficial for understanding the origin and fate of NO3-, its use for KCl-extractable soil NO3- has been hampered by the lack of a suitable analytical technique. Our objective was to test whether the denitrifier method, whereby NO3- is reduced to N2O before mass spectrometric analysis, can be used to determine the N and O isotopic composition of NO3- from 2 M KCl soil extracts. Several internationally accepted NO3- standards were dissolved in 2 M KCl, the conventional extractant for soil inorganic N, and inoculated with the bacterial strain Pseudomonas aureofaciens (ATCC no. 13985). The standard deviation of the NO3- standards analyzed did not exceed 0.2‰ for d15N and 0.3‰ for d18O values. After appropriate corrections, differences between our measured and consensus d15N and d18O values of standard NO3- generally were within the standard deviations given for the consensus values. Both d15N and d18O values were reproducible among separate analytical runs. The method was also tested on genuine 2 M KCl extracts from unfertilized and fertilized soils. Depending on N fertilization, the soils had distinct d15N and d18O values, which were attributed to amendment with NH4NO3 fertilizer. Hence, our data indicate that the denitrifier method provides a fast, reliable, precise, and accurate way of simultaneously analyzing the natural abundances of 15N and 18O in KCl-extractable soil NO3-.
Resumo:
Iron and Mn redistribute in soil and saprolite during weathering. The geological weathering fronts ofcalcareous sedimentary rock were investigated by examining the bulk density, porosity, and distribution ofCa, Fe, and Mn. Core samples were taken ofsoil, saprolite, and bedrock material from both summit (HHMS-4B) and sideslope (HHMS-5A) positions on an interbedded Nolichucky shale and Maryville limestone landform in Solid Waste Storage Area 6 (SWSA-6). This is a low-level radioactive solids waste disposal site on the Dept. ofEnergy (DOE) Oak Ridge Reservation in Roane County Tennessee. This work was initiated because data about the properties of highly weathered sedimentary rock on this site were limited. The core samples were analyzed for pH, calcium carbonate equivalence (CCE), hydroxylamine-extractable (HA) Mn, and dithionite-citrate (CBD)-extractable Fe and Mn. Low pH values occurred from the soil surface down to the depth of the oxidized and leached saprolite in both cores. The CCE and HA-extractable Mn results were also influenced by the weathering that has occurred in these zones. Extractable Mn oxide was higher at a lower depth in the oxidized and leached saprolite compared with the Fe oxide, which was higher in the overlying soil solum. Amounts of Mn oxides were higher in the sideslope core (HHMS-5A) than in the summit core (HHMS-4B). Iron was more abundant in the deeper weathered summit core, but the highest value, 39.4 g kg-1, was found at 1.8 to 2.4 m in the sideslope core. The zone encompassing the oxidized and partially leached saprolite down to the unoxidized and unleached bedrock had higher densities and larger quantities of CaCO3 than the soil solum and oxidized and leached saprolite. The overlying soil and oxidized and leached saprolite had lower pH and CCE values and were higher in Fe and Mn oxides than the oxidized and unleached saprolite. The distribution of Fe and Mn is important when evaluating soil and saprolite for hazardous waste disposal site assessment.