954 resultados para Soil physical attributes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The animal trampling favors the soil compaction process in sheep raising and crop production integrated systems. This compression has negative effects, hindering the development of roots, the availability of nutrients, water and aeration, causing production losses, making it essential for the assessment of soil physical attributes for monitoring soil quality. Soil organic matter can be used to assess the quality of the soil, due to its relationship with the chemical, physical and biological soil properties. Conservation management system with tillage, along with systems integration between crops and livestock are being used to maintain and even increase the levels of soil organic matter. For that, a field experiment was carried out over a Oxisol clayey Alic in Guarapuava, PR, from de 2006 one. experiment sheep raising and crop production integrated systems The climate classified as Cfb .. The study was to evaluate the soil physical properties and quantify the stock of soil organic carbon and its compartmentalization in system integration crop - livestock with sheep under four nitrogen rates (0, 75, 150 and 225 kg ha-1) in the winter pasture, formed by the consortium oat (Avena strigosa) and ryegrass (Lolium multiflorum) and the effect of grazing (with and without). The soil samples blades density evaluations, total porosity, macro and micro, aggregation and carbon stocks were held in two phases: Phase livestock (after removal of the animals of the area) and phase crop (after maize cultivation). The collection of soil samples were carried out in layers of 0-0.5, 0.05-0.10, 0.10-0.20 and m. Data were subjected to analysis of variance and the hypotheses tested by the F test (p <0.05). For the quantitative effect data regression and the qualitative effect used the test medium. In non-significant regressions used the average and standard deviation treatments. The animal trampling caused an increase in bulk density in the 0.10-0.20 m layer. The dose of 225 kg N ha-1 in winter pasture increased total soil porosity at 8% compared to dose 0 kg N ha-1 in the crop stage. The grazing had no effect on soil macroporosity. GMD of aggregates in the phase after grazing the surface layer was damaged by grazing. Nitrogen rates used in the winter pasture and grazing not influence the total organic carbon stocks. The TOC is not influenced by nitrogen fertilization on grassland. The grazing increases the stock of POC in the 0.10-0.20 m layer livestock phase and cause the stock of POC in the 0-0.5 m layer in the crop stage. The MAC is not influenced by N rates applied in the pasture or by grazing.
Resumo:
The objective of this work was to evaluate the correlation between sugarcane yield and some physical and chemical attributes of soil. For this, a 42‑ha test area in Araras, SP, Brazil, was used. Soil properties were determined from samples collected at the beginning of the 2003/2004 harvest season, using a regular 100x100 m grid. Yield assessment was done with a yield monitor (Simprocana). Correlation analyses were performed between sugarcane yield and the following soil properties: pH, pH CaCl2, N, C, cone index, clay content, soil organic matter, P, K, Ca, Mg, H+AL, cation exchange capacity, and base saturation. Correlation coefficients were respectively ‑0.05, ‑0.29, 0.33, 0.41, ‑0.27, 0.22, 0.44, ‑0.24, trace, ‑0.06, 0.01, 0.32, 0.14, and 0.04. Correlations of chemical and physical attributes of soil with sugarcane yield are weak, and, per se, they are not able to explain sugarcane yield variation, which suggests that other variables, besides soil attributes, should be analysed.
Resumo:
Soil properties play an important role in spatial variability of crop yield. However, a low spatial correlation has generally been observed between maps of crop yield and of soil properties. The objectives of the present investigation were to assess the spatial pattern variability of soil properties and of corn yield at the same sampling intensity, and evaluate its cause-and-effect relationships. The experimental site was structured in a grid of 100 referenced points, spaced at 10 m intervals along four parallel 250 m long rows spaced 4.5 m apart. Thus, points formed a rectangle containing four columns and 25 rows. Therefore, each sampling cell encompassed an area of 45 m² and consisted of five 10 m long crop rows, in which the referenced points represented the center. Samples were taken from the layers 0-0.1 m and 0.1-0.2 m. Soil physical and chemical properties were evaluated. Statistical analyses consisted of data description and geostatistics. The spatial dependence of corn yield and soil properties was confirmed. The hypothesis of this study was confirmed, i.e., when sampling the soil to determine the values of soil characteristics at similar to sampling intensity as for crop yield assessments, correlations between the spatial distribution of soil characteristics and crop yield were observed. The spatial distribution pattern of soil properties explained 65 % of the spatial distribution pattern of corn yield. The spatial distribution pattern of clay content and percentage of soil base saturation explained most of the spatial distribution pattern of corn yield.
Resumo:
This study aimed to investigate the potential use of magnetic susceptibility (MS) as pedotransfer function to predict soil attributes under two sugarcane harvesting management systems. For each area of 1 ha (one with green sugarcane mechanized harvesting and other one with burnt sugarcane manual harvesting), 126 soil samples were collected and subjected to laboratory analysis to determine soil physical, chemical and mineralogical attributes and for measuring of MS. Data were submitted to descriptive statistics by calculating the mean and coefficient of variation. In order to compare the means in the different harvesting management systems it was carried out the Tukey test at a significance level of 5%. In order to investigate the correlation of the MS with other soil properties it was made the correlation test and aiming to assess how the MS contributes to the prediction of soil complex attributes it was made the multiple linear regressions. The results demonstrate that MS showed, in both sugarcane harvesting management systems, statistical correlation with chemical, physical and mineralogical soil attributes and it also showed potential to be used as pedotransfer function to predict attributes of the studied oxisol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to investigate the potential use of magnetic susceptibility (MS) as pedotransfer function to predict soil attributes under two sugarcane harvesting management systems. For each area of 1 ha (one with green sugarcane mechanized harvesting and other one with burnt sugarcane manual harvesting), 126 soil samples were collected and subjected to laboratory analysis to determine soil physical, chemical and mineralogical attributes and for measuring of MS. Data were submitted to descriptive statistics by calculating the mean and coefficient of variation. In order to compare the means in the different harvesting management systems it was carried out the Tukey test at a significance level of 5%. In order to investigate the correlation of the MS with other soil properties it was made the correlation test and aiming to assess how the MS contributes to the prediction of soil complex attributes it was made the multiple linear regressions. The results demonstrate that MS showed, in both sugarcane harvesting management systems, statistical correlation with chemical, physical and mineralogical soil attributes and it also showed potential to be used as pedotransfer function to predict attributes of the studied oxisol.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.
Resumo:
Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.
Resumo:
The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No < 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (θPA) was found above estimated water content at field capacity (θFC) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m-3 for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the θFC, and in the bottom part, by the water content from which soil resistance to penetration is limiting (θPR). By means of LLWR it was observed that the soil presented good physical quality.
Resumo:
The Technologies setting at Agricultural production system have the main characteristics the vertical productivity, reduced costs, soil physical, chemical and biological improvement to promote production sustainable growth. Thus, the study aimed to determine the variability and the linear and special correlations between the plant and soil attributes in order to select and indicate good representation of soil physical quality for forage productivity. In the growing season of 2006, on the Fazenda Bonança in Pereira Barreto (SP), the productivity of autumn corn forage (FDM) in an irrigated no-tillage system and the soil physical properties were analyzed. The purpose was to study the variability and the linear and spatial correlations between the plant and soil properties, to select an indicator of soil physical quality related to corn forage yield. A geostatistical grid was installed to collect soil and plant data, with 125 sampling points in an area of 2,500 m². The results show that the studied properties did not vary randomly and that data variability was low to very high, with well-defined spatial patterns, ranging from 7.8 to 38.0 m. On the other hand, the linear correlation between the plant and the soil properties was low and highly significant. The pairs forage dry matter versus microporosity and stem diameter versus bulk density were best correlated in the 0-0.10 m layer, while the other pairs - forage dry matter versus macro - and total porosity - were inversely correlated in the same layer. However, from the spatial point of view, there was a high inverse correlation between forage dry matter with microporosity, so that microporosity in the 0-0.10 m layer can be considered a good indicator of soil physical quality, with a view to corn forage yield.
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
Management systems may lead to a loss of soil physical quality as a result of removal of the plant cover and excessive agricultural mechanization. The hypothesis of this study was that the soil aggregate stability, bulk density, macro- and microporosity, and the S index and saturated hydraulic conductivity may be used as indicators of the soil physical quality. The aim was to study the effects of different periods and managements on the physical attributes of a medium-textured Red Oxisol under soybean and corn for two growing seasons, and determine which layers are most susceptible to variations. A completely randomized experimental design was used with split plots (five treatments and four layers), with four replications. The treatments in 2008/09 consisted of: five years of no-tillage (NTS5), seven years of no-tillage (NTS7), nine years of no-tillage (NTS9), conventional tillage (CTS) and an adjacent area of native forest (NF). The treatments were extended for another year, identified in 2009/10 as: NTS6, NTS8, NTS10, CTS and NF. The soil layers 0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.30 m were sampled. The highest S index values were observed in the treatment CTS in the 0-0.05 m layer (0.106) and the 0.05-0.10 m layer (0.099) in 2008/09, and in the 0-0.05 m layer (0.066) in 2009/10. This fact may be associated with soil turnover, resulting in high macroporosity in this treatment. In contrast, in the NTS, limiting macroporosity values were observed in some layers (below 0.10 m³ m-3). Highest aggregate stability as well as the highest saturated hydraulic conductivity (Kθ) values were observed in NF in relation to the other treatments. In 2009/10, the Kθ in NF differed only from NTS10. This study showed that the use of the S index alone cannot be recommended as an absolute indicator of the soil physical quality, even at values greater than 0.035.
Resumo:
The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere) and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt), and water storage capacity (FC/Pt) of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil) under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035). The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.