965 resultados para Soil applied
Resumo:
Relatively new in the UK, soil mix technology applied to the in-situ remediation of contaminated land involves the use of mixing tools and additives to construct permeable reactive in-ground barriers and low-permeability containment walls and for hot-spot soil treatment by stabilisation/ solidification. It is a cost effective and versatile approach with numerous environmental advantages. Further commercial advantages can be realised by combining this with ground improvement through the development of a single integrated soil mix technology system which is the core objective of Project SMiRT (Soil Mix Remediation Technology). This is a large UK-based R&D project involving academia-industry collaboration with a number of tasks including equipment development, laboratory treatability studies, field trials, stakeholder consultation and dissemination activities. This paper presents aspects of project SMiRT relating to the laboratory treatability study work leading to the design of the field trials. © 2012 American Society of Civil Engineers.
Resumo:
A novel fiber coated with novel sol-gel (5,11,17,23-tetra-tert-butyl-25,27-dihydroxy-26,28-diglycidyloxycalix[4]arene/hydroxy-terminated silicone oil; diglycidyloxy-C[4]/OH-TSO) was prepared for use with headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) and electron capture detection (ECD), which was applied in order to determine nine chlorobenzenes in soil matrices. Due to the improved fiber preparation, which increases the percentage of calixarene in the coating, the new calixarene fiber exhibits very high extraction selectivity and sensitivity to chlorine-substituted compounds. Various parameters affecting the extraction efficiency were optimized in order to maximize the sensitivity during the chlorobenzene analysis. Interferences from different soil matrices with different characteristics were investigated, and the amount extracted was strongly influenced by the matrix. Therefore, a standard addition protocol was performed on the real soil samples. The linear ranges of detection for the chlorobenzenes tested covered three orders of magnitude, and correlation coefficients > 0.9976 and relative standard deviations (RSD) < 8% were observed. The detection limits were found at sub-ng/g of soil levels, which were about an order of magnitude lower than those given by the commercial poly(dimethylsiloxane) (PDMS) coating for most of the compounds. The recoveries ranged from 64 to 109.6% for each analyte in the real kaleyard soil matrix when different concentration levels were determined over the linear range, which confirmed the reliability and feasibility of the HS-SPME/GC-ECD approach using the fiber coated with diglycidyloxy-C[4]/OH-TSO for the ultratrace analysis of chlorobenzenes in complex matrices.
Resumo:
Extracellular polymeric substances (EPS) from four filamentous cyanobacteria Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green alga Desmococcus olivaceus that had been separated from desert algal crusts of Tegger desert of China, were investigated for their chemical composition, structure,and physical properties. The EPS contained 7.5-50.3% protein (in polymers ranging from 14 to more than 200 kD, SDS-PAGE) and 16.2-46.5% carbohydrate (110-460 kD, GFC). 6-12 kinds of monosaccharides, including 2-O-methyl rhamnose, 2-O-methyl glucose, and N-acetyl glucosamine were found. The main carbohydrate chains from M. vaginatus and S. javanicum consisted mainly of equal proportion of Man, Gal and Glc, that from P. tenue consisted mainly of arabinose, glucose and rhamnose. Arabinose was present in pyranose form, mainly alpha-L 1 --> 3 linked, with branches on C4 of almost half of the units. Glucose was responsible for the terminal units, in addition of having some units as beta1 --> 3 and some as beta1 --> 4 linked. Rhamnose was mainly 1 --> 3 linked with branches on C2 on half of the units. The carbohydrate polymer from D. olivaceus was composed mainly of beta1 --> 4 linked xylose, galactose and glucose. The galactose part was present both in beta-pyranose and -furanose forms. Arabinose in alpha-L-furanose form was mainly present as 1 --> 2 and 1 --> 2, 5 linked units, rhamnose only as alpha 1 --> 3 and xylose as beta 1 --> 4. The backbone of the polysaccharide from Nostoc sp. was composed of beta-1 --> 4 linked xylose, galactose and glucose. Most of the glucose was branched on position C6, terminal glucose and 2-O-methyl glucose units are also present. The relationship between structure, physical properties and potential biological function is discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.
Resumo:
IEECAS SKLLQG
Resumo:
In addition to classical methods, namely kriging, Inverse Distance Weighting (IDW) and splines, which have been frequently used for interpolating the spatial patterns of soil properties, a relatively more accurate surface modelling technique is being developed in recent years, namely high accuracy surface modelling (HASM). It has been used in the numerical tests, DEM construction and the interpolation of climate and ecosystem changes. In this paper, HASM was applied to interpolate soil pH for assessing its feasibility of soil property interpolation in a red soil region of Jiangxi Province, China. Soil pH was measured on 150 samples of topsoil (0-20 cm) for the interpolation and comparing the performance of HASM, kriging. IDW and splines. The mean errors (MEs) of interpolations indicate little bias of interpolation for soil pH by the four techniques. HASM has less mean absolute error (MAE) and root mean square error (RMSE) than kriging, IDW and splines. HASM is still the most accurate one when we use the mean rank and the standard deviation of the ranks to avoid the outlier effects in assessing the prediction performance of the four methods. Therefore, HASM can be considered as an alternative and accurate method for interpolating soil properties. Further researches of HASM are needed to combine HASM with ancillary variables to improve the interpolation performance and develop a user-friendly algorithm that can be implemented in a GIS package. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.