829 resultados para Software Engineering Education


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been considerable debate about the need for more empirical, evidence based studies of the impact of various interventions and practices in engineering education. A number of resources including workshops to guide engineering faculty in the conduct of such studies have emerged over recent years. This paper presents a critique of the evolution of engineering education research and its underlying assumptions in the context of the systemic reform currently underway in engineering education. This critique leads to an analysis of the ways in which our current understanding of engineering, engineering education and research in engineering education is shaped by the traditions and cultural characteristics of the profession and grounded, albeit implicitly, in a particular suite of epistemological assumptions. It is argued that the whole enterprise of engineering education needs to be radically reconceptualized. A pluralistic approach to framing scholarship in engineering education is then proposed based on the principles of demonstrable practicality, critical interdisciplinarity and holistic reflexivity. This new framework has implications for engaging and developing faculty in the context of new teaching and learning paradigms, for the evaluation of the scholarship of teaching and for the research-teaching nexus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Established in 1986, ASWEC is the premier technical meeting for the Australian Software Engineering Community, and attracts a significant number of international participants. The conference is sponsored by both Engineers Australia and the Australian Computer Society. The major goal of the conference is to provide a forum for exchanging experience and new research results in software engineering. The technical program for ASWEC 2004 includes research papers from Australia and across the world. This year we received 79 submissions from 12 countries: 56 from Australia, 6 from New Zealand, 9 from Asia, 4 from Europe, and 4 from North America. All papers were fully refereed by three (two papers by only two) Program Committee members. We accepted 36 papers to be presented at the conference. We are grateful to all authors who contributed to ASWEC 2004. In addition to the technical papers, the conference program also includes two keynote speakers and one panel on Software Engineering accreditation. We are very pleased about being able to attract Philippe Kruchten, University of British Columbia, and Ian Hayes, The University of Queensland, as the keynote speakers for this conference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Established in 1986, ASWEC is the premier technical meeting for the Australian software engineering community, and attracts a significant number of international participants. The major goal of the conference is to provide a forum for exchanging experience and new research results in software engineering. To increase the industry participation at ASWEC, we organized two separate paper tracks, which we have called Research Papers and Industry Experience Reports. These paper tracks had separate deadlines, separate program committees, separate review procedures, and separate proceedings. The Research Papers appear in these proceedings and the Industry Experience Reports will appear on a CD-Rom that will be distributed at the conference. The Research Papers track for ASWEC 2005 includes submissions from Australia and across the world. This year we received 79 submissions from 13 countries: 48 from Australia, 7 from New Zealand, 11 from Asia, 9 from Europe, and 2 each from North and South America. All papers were fully refereed by three Program Committee members. We accepted 34 papers to be presented at the conference. We are grateful to all authors who contributed to ASWEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper begins with the argument that within modern-day society, engineering has shifted from being the scientific and technical mainstay of industrial, and more recently digital change to become the most vital driver of future advancement. In order to meet the inevitable challenges resulting from this role, the nature of engineering education is constantly evolving and as such engineering education has to change. The paper argues that what is needed is a fresh approach to engineering education – one that is sufficiently flexible so as to capture the fast-changing needs of engineering education as a discipline, whilst being pedagogically suitable for use with a range of engineering epistemologies. It provides an overview of a case study in which a new approach to engineering education has been developed and evaluated. The approach, which is based on the concept of scholarship, is described in detail. This is followed by a discussion of how the approach has been put into practice and evaluated. The paper concludes by arguing that within today's market-driven university world, the need for effective learning and teaching practice, based in good scholarship, is fundamental to student success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates how existing software engineering techniques can be employed, adapted and integrated for the development of systems of systems. Starting from existing system-of-systems (SoS) studies, we identify computing paradigms and techniques that have the potential to help address the challenges associated with SoS development, and propose an SoS development framework that combines these techniques in a novel way. This framework addresses the development of a class of IT systems of systems characterised by high variability in the types of interactions between their component systems, and by relatively small numbers of such interactions. We describe how the framework supports the dynamic, automated generation of the system interfaces required to achieve these interactions, and present a case study illustrating the development of a data-centre SoS using the new framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper draws attention to the findings of an exploratory study that critically identified and analysed relevant perceptions of elementary level engineering education within the UK. Utilising an approach based upon grounded theory methodology, 30 participants including teachers, representatives of government bodies and non-profit providers of primary level engineering initiatives were interviewed. Three main concepts were identified during the analysis of findings, each relevant to primary engineering education. These were pedagogic issues, exposure to engineering within the curriculum and children's interest. The paper concludes that the opportunity to make a real difference to children's education by stimulating their engineering imagination suggests this subject area is of particular value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting with the question “How can University level Engineering Education be developed in such a way so as to enhance the quality of the student learning experience?”, this discussion paper proposes an approach to engineering education developed by a senior engineering educator working alongside a pedagogical researcher in an attempt to engage colleagues in contemporary debates about the issues currently faced across the Sector. Such issues include difficulties with recruiting students onto programmes as well as high levels of student attrition and failure. Underpinned by three distinctive concepts: Synergy, Variety & Relationships (S+V+R), the approach brings together pedagogic and engineering epistemologies in an empirically grounded framework in such a way so as to provide an accessible and relevant learning approach that, if followed, engenders student success [S2]. Specifically developed with the intention of increasing retention and positively impacting student success [S2], the S+V+R=S2 approach provides a scholarly and Synergetic (S) approach to engineering education that is both innovative and exciting. Building on the argument that Variety (V) in education is pivotal to promoting originality and creativity in learning and teaching, this paper shows how, by purposefully developing a range of learning and teaching approaches, student engagement and thus success can be increased. It also considers the importance of Relationships (R) in higher education, arguing that belonging and relationships are crucial factors impacting student experiences. When taken together (Synergy, Variety and Relationships) and applied within an Engineering Education context, students are provided with a unique learning environment – one that both promotes individual success and improves organisational effectiveness. The uniqueness of the approach is in the synthesis of these three concepts within an Engineering Education epistemology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper draws upon the findings of an empirical study comparing the expectations and concerns of engineering students with students enrolled on business and management programs. It argues that whilst the two groups of students have very similar expectations, motivations and concerns before their start their studies, once at university, engineering students are twice as likely to drop-out than are their compatriots in business studies. Drawing upon the study findings, recommendations are made as to what might be done to counteract this. The conclusion argues that there is a need for more in-depth research to be conducted in this area in order to identify the reasons behind the different attrition rates and to further enhance engineering undergraduate experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years, the role of engineering in promoting a sustainable society has received much public attention [1] with particular emphasis given to the need to promote the future prosperity and security of society through the recruitment and education of more engineers [2,3]. From an employment perspective, the Leitch Review [4] suggested that ‘generic’ transferable employability skills development should constitute a more substantial part of university education. This paper argues that the global drivers impacting engineering education [5] correlate strongly to those underpinning the Leitch review, therefore the question of how to promote transferable employability skills within the wider engineering curriculum is increasingly relevant. By exploring the use of heritage in the engineering curriculum as a way to promote learning and engage students, a less familiar approach to study is discussed. This approach moves away from stereotypical notions of the use of information technology as representing the pinnacle of innovation in education. Taking the student experience as its starting point, the paper draws upon the findings of an exploratory study critically analysing the pedagogical value of using heritage in engineering education. It discusses a teaching approach in which engineering students are taken out of their ‘comfort zone’ - away from the classroom, laboratory and computer, to a heritage site some 100 miles away from the university. The primary learning objective underpinning this approach is to develop students’ transferable skills by encouraging them to consider how to apply theoretical concepts to a previously unexplored situation. By reflecting upon students’ perceptions of the value of this approach, and by identifying how heritage may be utilised as an innovative learning and teaching approach in engineering education, this paper makes a notable contribution to current pedagogical debates in the discipline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A critique of experiential learning in engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this roadmap paper is to summarize the state-of-the-art and to identify critical challenges for the systematic software engineering of self-adaptive systems. The paper is partitioned into four parts, one for each of the identified essential views of self-adaptation: modelling dimensions, requirements, engineering, and assurances. For each view, we present the state-of-the-art and the challenges that our community must address. This roadmap paper is a result of the Dagstuhl Seminar 08031 on "Software Engineering for Self-Adaptive Systems," which took place in January 2008. © 2009 Springer Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper builds on previous work (Clark, 2009; Clark & Andrews 2011, 2014) to continue the debate around a seemingly universal question…“How can educational theory be applied to engineering education in such a way so as to make the subject more accessible and attractive to students? It argues that there are three key elements to student success; Relationships, Variety & Synergy (RVS). By further examining the purposefully developed bespoke learning and teaching approach constructed around these three elements (RVS) the discourse in this paper links educational theory to engineering education and in doing so further develops arguments for the introduction of a purposefully designed pedagogic approach for use in engineering education.