981 resultados para Software 3D e 2D


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Análisis, diseño, prototipado y desarrollo de un prototipo de videojuego del género plataformas en 2D. El análisis comienza a partir de una idea original, por lo que se incluye un estudio y prototipado de las mecánicas candidatas. Siguiendo los principios de la Ingeniería del Software, se lleva a cabo un documento de diseño y de arquitectura del software. La implementación se desarrolla siguiendo la arquitectura previamente establecida y se han añadido diferentes plataformas de control (mando, teclado y ratón) para enriquecer la experiencia de usuario. El desarrollo de este trabajo incluye un fuerte componente de diseño de videojuegos, incluyendo el estudio de referencias, análisis de mecánicas, evaluación de la experiencia del jugador y diseño de niveles. Nos centraremos en la preproducción de un juego, fase en la que se toman todas las decisiones sobre todos los aspectos finales de un videojuego. Tras un estudio de los motores de videojuego disponibles para el público, se ha utilizado el motor Unity 3D para la implementación final, llevando a cabo el desarrollo en la versión beta de Unity 4.6. A través del motor de videojuego podemos trabajar con animaciones, audio, interfaz, etc.  El lenguaje utilizado es C#. Como complemento se incluye un breve estudio de la historia de los videojuegos, los diferentes motores de videojuegos actuales y nociones del diseño de videojuegos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerical modelling was performed to study the dynamics of multilayer detachment folding and salt tectonics. In the case of multilayer detachment folding, analytically derived diagrams show several folding modes, half of which are applicable to crustal scale folding. 3D numerical simulations are in agreement with 2D predictions, yet fold interactions result in complex fold patterns. Pre-existing salt diapirs change folding patterns as they localize the initial deformation. If diapir spacing is much smaller than the dominant folding wavelength, diapirs appear in fold synclines or limbs.rnNumerical models of 3D down-building diapirism show that sedimentation rate controls whether diapirs will form and influences the overall patterns of diapirism. Numerical codes were used to retrodeform modelled salt diapirs. Reverse modelling can retrieve the initial geometries of a 2D Rayleigh-Taylor instability with non-linear rheologies. Although intermediate geometries of down-built diapirs are retrieved, forward and reverse modelling solutions deviate. rnFinally, the dynamics of fold-and-thrusts belts formed over a tilted viscous detachment is studied and it is demonstrated that mechanical stratigraphy has an impact on the deformation style, switching from thrust- to folding-dominated. The basal angle of the detachment controls the deformation sequence of the fold-and-thrust belt and results are consistent with critical wedge theory.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

XCModel è un sistema CAD, basato su NURBS, realizzato ed utilizzato in ambiente accademico. È composto da quattro pacchetti per la modellazione 2D, 3D e la resa foto-realistica, ognuno dotato di una propria interfaccia grafica. Questi pacchetti sono in costante evoluzione: sia per le continua evoluzioni dell’hardware che ai cambiamenti degli standard software. Il sistema nel complesso raccoglie la conoscenza e l’esperienza nella modellazione geometrica acquisita nel tempo dai progettisti. XCModel, insieme ai suoi sottosistemi, sono stati progettati per diventare un laboratorio di insegnamento e ricerca utile a sperimentare ed imparare metodi ed algoritmi nella modellazione geometrica e nella visualizzazione grafica. La natura principalmente accademica, e la conseguente funzione divulgativa, hanno richiesto continui aggiornamenti del programma affinché potesse continuare a svolgere la propria funzione nel corso degli anni. La necessità di continuare a ad evolversi, come software didattico, anche con il moderno hardware, è forse il principale motivo della scelta di convertire XCModel a 64 bit; una conversione che ho svolto in questa tesi. Come molte altre applicazioni realizzate a 32 bit, la maggior parte del codice viene eseguito correttamente senza problemi. Vi sono però una serie di problematiche, a volte molto subdole, che emergono durante la migrazione delle applicazioni in generale e di XCModel in particolare. Questa tesi illustra i principali problemi di portabilità riscontrati durante il porting a 64 bit di questo pacchetto seguendo il percorso da me intrapreso: mostrerò gli approcci adottati, i tool utilizzati e gli errori riscontrati.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.