987 resultados para Soft-bottom marine benthos


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of time averaging on the fossil record of soft-substrate marine faunas have been investigated in great detail, but the temporal resolution of epibiont assemblages has been inferred only from limited-duration deployment experiments. Individually dated shells provide insight into the temporal resolution of epibiont assemblages and the taphonomic history of their hosts over decades to centuries. Epibiont abundance and richness were evaluated for 86 dated valves of the rhynchonelliform brachiopod Bouchardia rosea collected from the inner shelf. Maximum abundance occurred on shells less than 400 yr old, and maximum diversity was attained within a century. Taphonomic evidence does not support models of live-host colonization, net accumulation, or erasure of epibionts over time. Encrustation appears to have occurred during a brief interval between host death and burial, with no evidence of significant recolonization of exhumed shells. Epibiont assemblages of individually dated shells preserve ecological snapshots, despite host-shell time averaging, and may record long-term ecological changes or anthropogenic environmental changes. Unless the ages of individual shells are directly estimated, however, pooling shells of different ages artificially reduces the temporal resolution of their encrusting assemblages to that of their hosts, an artifact of analytical time averaging. © 2006 by The University of Chicago. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intertidal and subtidal soft bottom macro- and meiofauna of a glacier fjord on Spitsbergen was studied after complete ice melt in June 2003. The abundances of the benthic fauna were within the range reported from estuaries and similar intertidal areas of boreal regions. The high proportion of juveniles in the eulittoral zone indicated larval recruitment from subtidal areas. The macrobenthic fauna can be divided into an intertidal and a subtidal community, both being numerically dominated by annelids. Deposit feeders were numerically predominant in intertidal sites, whereas suspension feeders were most abundant in the subtidal area. Among the meiofauna, only the benthic copepods were identified to species, revealing ecological adaptations typical for intertidal species elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of both natural conditions and anthropogenic environmental impacts can lead to different soft-bottom macrobenthic distribution patterns. Soft-bottom macrobenthic community was analysed at different taxonomic scales in order to evaluate whether diverse subset of organisms respond to the variability of the environmental pressures (natural and human induced) showing or not similar distribution patterns. Therefore, this long-term survey had been focused on a heterogeneous area, where both anthropogenic and natural stress may affect the community. Three perpendicular transects to the coast were established and stations at 4, 10 and 15 m depths were sampled at each transect twice a year (summer- winter) from 2004 to 2009. Non-parametric multivariate techniques were used to analyse soft-bottom macrobenthic community distribution and its relation to the environmental factors. Similar distribution patterns between investigated taxonomic levels were detected and they were mainly related to depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many regions, seawater desalination is a growing industry that has its impact on benthic communities. This study analyses the effect on benthic communities of a mitigation measure applied to a brine discharge, using polychaete assemblages as indicator. An eight-year study was conducted at San Pedro del Pinatar (SE Spain) establishing a grid of 12 sites at a depth range of 29–38 m during autumn. Brine discharge started in 2006 and produced a significant decrease in abundance, richness and diversity of polychaete families at the location closest to the discharge, where salinity reached 49. In 2010, a diffuser was deployed at the end of the pipeline in order to increase the mixing, to reduce the impact on benthic communities. After implementation of this mitigation measure, the salinity measured close to discharge was less than 38.5 and a significant recovery in polychaete richness and diversity was detected, to levels similar to those before the discharge. A less evident recovery in abundance was also observed, probably due to different recovery rates of polychaete families. Some families like Paraonidae and Magelonidae were more tolerant to this impact. Others like Syllidae and Capitellidae recovered quickly, although still affected by the discharge, while some families such as Sabellidae and Cirratulidae appeared to recover more slowly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate taxonomic and environmental control on the preservation pattern of brachiopod accumulations, sedimentologic and taphonomic data have been integrated with those inferred from the structure of brachiopod accumulations from the easternmost Lower Jurassic Subbetic deposits in Spain. Two brachiopod communities (Praesphaeroidothyris and Securina communities) were distinguished showing a mainly free-lying way of life in soft-bottom habitats. Three taphofacies are discriminated based on proportion of disarticulation, fragmentation, packing, and shell filling. Taphofacies 1 is represented by thinly fragmented, dispersed brachiopod shells in wackestone beds. Taphofacies 2 is spatially restricted to small lenses where shells are poorly fragmented, rarely disarticulated, usually void filled, and highly packed. Taphofacies 3 is represented by mud or cement filled, loosely packed, articulated brachiopods forming large pocket-like structures. Temporal and spatial averaging were minimally involved in taphofacies 2 and 3. It is interpreted that patchy preservation implies preservation of primary original patchiness of brachiopod communities on the seafloor. The origin of shell-rich taphofacies (2 and 3) is related to rapid burial due to episodic storm activity, while shell-poor taphofacies 1 records background conditions. The nature and comparative diversity of these taphofacies underscores the importance of rapid burial for shell beds preservation. Differences in preservation between taphofacies 2 and 3 are mainly related to environmental criteria, most importantly storm energy and water depth. In contrast, the taxonomic-specific pattern of the communities is a subordinate element of control, controlling only minor within-taphofacies differences in preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translation of articles which originally appeared in Itoginauki: Dostizhenii︠a︡ okeanologii, 1959.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)