906 resultados para Soft Thresholding
Resumo:
It is a policy of Solid State Communications’ Executive Editorial Board to organize special issues from time to time on topics of current interests. The present issue focuses on soft condensed matter, a rapidly developing and diverse area of importance not only for the basic science, but also for its potential applications. The ten articles in this issue are intended to give the readers a snapshot of some latest developments in soft condensed matter, mainly from the point of view of basic science. As the special issues are intended for a broad audience, most articles are short reviews that introduce the readers to the relevant topics. Hence this special issue can be especially helpful to readers who might not be specialists in this area but would like to have a quick grasp on some of the interesting research directions.
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.
Resumo:
A fuzzy system is developed using a linearized performance model of the gas turbine engine for performing gas turbine fault isolation from noisy measurements. By using a priori information about measurement uncertainties and through design variable linking, the design of the fuzzy system is posed as an optimization problem with low number of design variables which can be solved using the genetic algorithm in considerably low amount of computer time. The faults modeled are module faults in five modules: fan, low pressure compressor, high pressure compressor, high pressure turbine and low pressure turbine. The measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a base line 'good engine'. The genetic fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and measurement uncertainties change which happens for different engines and airlines. In addition, the genetic fuzzy system reduces the human effort needed in the trial and error process used to design the fuzzy system and makes the development of such a system easier and faster. A radial basis function neural network (RBFNN) is also used to preprocess the measurements before fault isolation. The RBFNN shows significant noise reduction and when combined with the GFS leads to a diagnostic system that is highly robust to the presence of noise in data. Showing the advantage of using a soft computing approach for gas turbine diagnostics.
Resumo:
We present the x-ray absorption data at the oxygen K-edge using total yield technique for Gd1−xPrxba2Cu3O7 (x= 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0). The data clearly to oxygen that the holes doped in the GdBa2Cu3O7 due to oxygen composition are not removed by Pr doping even for the x = 1.0 sample, suggesting that Pr is predominantly in the formally trivalent state. However, the data also clearly indicate the evidence of hybridization effects between the Pr3+ and the adjacent CuO2 layers. This is suggested to be responsible for the progressive suppression of Tc and the metallicity with Pr doping in these systems.
Resumo:
A new super convergent sandwich beam finite element formulation is presented in this article. This element is a two-nodded, six degrees of freedom (dof) per node (3 dof u(0), w, phi for top and bottom face sheets each), which assumes that all the axial and flexural loads are taken by face sheets, while the core takes only the shear loads. The beam element is formulated based on first-order shear deformation theory for the face sheets and the core displacements are assumed to vary linearly across the thickness. A number of numerical experiments involving static, free vibration, and wave propagation analysis examples are solved with an aim to show the super convergent property of the formulated element. The examples presented in this article consider both metallic and composite face sheets. The formulated element is verified in most cases with the results available in the published literature.
Resumo:
Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a jelly-like consistency The composite ionic conductivity measured over the range -30 C to 60 C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 degrees C up to 50 wt% PMMA) While addition of LiTFSI to IL does not influence the glass T-g and T-m melting temperature significantly dispersion of PMMA (especially at higher contents) resulted in increase in T-g and disappearance of T-m In general the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport However for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other Because of the beneficial physico-chemical properties and interesting ion transport mechanism we envisage the present soft matter electrolytes to be promising for application in electrochromic devices (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Soft tissue sarcomas are malignant tumours of mesenchymal origin. Because of infiltrative growth pattern, simple enucleation of the tumour causes a high rate of local recurrence. Instead, these tumours should be resected with a rim of normal tissue around the tumour. Data on the adequate margin width are scarce. At Helsinki University Central Hospital (HUCH) a multidisciplinary treatment group started in 1987. Surgical resection with a wide margin (2.5 cm) is the primary aim. In case of narrower margin radiation therapy is necessary. The role of adjuvant chemotherapy remains unclear. Our aims were to study local control by the surgical margin and to develop a new prognostic tool to aid decision-making on which patients should receive adjuvant chemotherapy. Patients with soft tissue sarcoma of the extremity or the trunk wall referred to HUCH during 1987-2002 form material in Studies I and II. External validation material comes from the Lund university sarcoma registry. The smallest surgical margin of at least 2.5 centimetres yielded local control of 89 per cent at five years. Amputation rate was 9 per cent. The proposed prognostic model with necrosis, vascular invasion, size on a continuous scale, depth, location and grade worked well both in Helsinki material and in the validation material, and it also showed good calibration. Based on the present study, we recommend the smallest surgical margin of 2-3 centimetres in soft tissue sarcoma irrespective of grade. Improvement in local control was present but modest in margins wider than 1 centimetre. In cases where gaining a wider margin would lead to a considerable loss of function, smaller margin is to be considered combined to radiation therapy. Patients treated with inadequate margins should be offered radiation therapy irrespective of tumour grade. Our new prognostic model to estimate 10-year survival probability in patients with soft tissue sarcoma of the extremities or trunk wall showed good dicscrimination and calibration. For time being the prognostic model is available for scientific use and further validations. In the future, the model may aid in clinical decision-making. For operable osteosarcoma, neoadjuvant multidrug chemotherapy followed by delayed surgery and multidrug adjuvant chemotherapy is the treatment of choice. Overall survival rates at five years are approximately 75 per cent in modern trials with classical osteosarcoma. All patients diagnosed and reported to the Finnish Cancer Registry with osteosarcoma in Finland during 1971-2005 form the material in Studies III and IV. Limb-salvage rate increased from 23 per cent to 78 per cent during 1971-2005. The 10-year sarcoma-specific survival for the whole study population improved from 32 per cent to 62 per cent. It was 75 per cent for patients with a local high-grade osteosarcoma of the extremity diagnosed during 1991-2005. This study outlines the improved prognosis of osteosarcoma patients in Finland with modern chemotherapy. The 10-year survival rates are good also in an international scale. Nonetheless, their limb-salvage rate remains inferior to those seen for highly selected patient series. Overall, the centralisation of osteosarcoma treatment would most likely improve both survival and limb-salvage rates even further.
Resumo:
We report the soft-X-ray absorption spectra at the oxygen K-edge of La1-xSrxCoO3-δ (x = 0.0, 0.1, 0.2, 0.3 and 0.4) series with experimentally determined δ values. We show that the doping of holes by replacing La3+ with Sr2+ induces states within the band gap of the insulating undoped compound for small x and these doped states have a very substantial oxygen 2p character. This indicates that the insulating compounds belong to the charge transfer insulator regime. With increasing Sr content, the doped states broaden into a band overlapping the top of the primarily oxygen p-derived band, leading to an insulator-metal transition at x ≥ 0.2.
Crystal and Molecular Structure of Sclerophytin F Methyl Ether from the Soft Coral Cladiella krempfi
Resumo:
new cembranoid diterpene was isolated from the soft coral Ckdiella h p f ifrom Minicoy Island (India), and its structure was established by X-ray crystallography to be sclerophytin F methyl ether (21 with the R absolute configuration at all six epimeric centers,assuming a configuration similar to that of sclerophytin C. Compound 2 may be an artifact of the isolation process.
Resumo:
The granular flow down an inclined plane is simulated using the discrete element (DE) technique to examine the extent to which the dynamics of an unconfined dense granular flow can be well described by a hard particle model First, we examine the average coordination number for the particles in the flow down an inclined plane using the DE technique using the linear contact model with and without friction, and the Hertzian contact model with friction The simulations show that the average coordination number decreases below 1 for values of the spring stiffness corresponding to real materials, such as sand and glass, even when the angle of inclination is only 10 larger than the angle of repose Additional measures of correlations in the system, such as the fraction of particles with multibody contact, the force ratio (average ratio of the magnitudes of the largest and the second largest force on a particle), and the angle between the two largest forces on the particle, show no evidence of force chains or other correlated motions in the system An analysis of the bond-orientational order parameter indicates that the flow is in the random state, as in event-driven (ED) simulations V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] The results of the two simulation techniques for the Bagnold coefficients (ratio of stress and square of the strain rate) and the granular temperature (mean square of the fluctuating velocity) are compared with the theory V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] and are found to be in quantitative agreement In addition, we also conduct a comparison of the collision frequency and the distribution of the precollisional relative velocities of particles in contact The strong correlation effects exhibited by these two quantities in event-driven simulations V Kumaran, J Fluid Mech 632, 145 (2009)] are also found in the DE simulations (C) 2010 American Institute of Physics doi 10 1063/1 3504660]
Resumo:
The paper describes an experimental and analytical study of the normal and scratch hardnesses of a model soft rigid-plastic solid. The material known as ‘Plasticine’, a mixture of dry particles and a mineral oil, has been deformed with a range of rigid conical indentors with included angles of between 30° and 170°. The sliding velocity dependence of the computed scratch hardness and friction has been examined in the velocity range 0.19 mm/s to 7.3 m/s. Data are also described for the time dependence of the normal hardness and also the estimated rate dependence of the intrinsic flow stress. The latter values were estimated from data obtained during the upsetting of right cylinders. Three major conclusions are drawn from these data and the associated analysis. (1) A first-order account of the scratching force may be provided by adopting a model which sums the computed plastic deformation and interfacial sliding contributions to the total sliding work. This is tantamount to the adoption of the two-term non-interacting model of friction. (2) For this system during sliding, at high sliding velocities at least, the interface shear stress which defines the boundary condition is not directly related to the bulk shear stress. The interface rheological characteristics indicate an appreciable dependence on the imposed strain or strain rate. In particular, the relative contributions of the slip and stick boundary conditions appear to be a function of the imposed sliding velocity. (3) The computed normal and scratch hardness values are not simply interrelated primarily because of the evolving boundary conditions which appear to exist in the scratching experiments.
Resumo:
We describe three different families of metal oxides, viz., (i) protonated layered perovskites, (ii) framework phosphates of NASICON and KTiOPO4 (KTP) structures and (iii) layered and three-dimensional oxides in the H-V-W-O system, synthesized by 'soft-chemical' routes involving respectively ion-exchange, redox deinteracalation and acid-leaching from appropriate parent oxides. Oxides of the first family, HyA2B3O10(A = La/Ca; B = Ti/Nb), exhibit variable Bronsted acidity and intercalation behaviour that depend on the interlayer structure. V2(PO4)3 prepared by oxidative deintercalation from Na3V2(PO4)3 is a new host material exhibiting reductive insertion of lithium/hydrogen, while K0.5Nb0.5 M0.5OPO4(M = Ti, V) are novel KTP-like materials exhibiting second harmonic generation of 1064 nm radiation. HxVxW1-xO3 for x = 0.125 and 0.33 possessing alpha-MoO3 and hexagonal WO3 structures, prepared by acid-leaching of LiVWO6, represent functionalized oxide materials exhibiting redox and acid-base intercalation reactivity.
Resumo:
Two new vanadium-tungsten oxide hydrates of the formulas, H0.125V0.125W0.875O3.1.5H2O (I) and Ho.33V0.33W0.67O3.1/3H2O (II), have been synthesized by acid-leaching of LiVWO6 with aqueous HNO3/HCl. While phase I obtained by treatment of LiVWO6 with dilute HNO3/HCl possesses an orthorhombic structure (a = 7.77(3), b = 13.87(6), c = 7.44(3) angstrom) related to WO3.2H2O, phase II, prepared by refluxing LiVWO6 with concentrated HNO3, is isostructural with WO3.1/3H2O. Dehydration of II around 330-degrees-C yields a hexagonal phase (III, a = 7.25(4), c = 7.74(3) angstrom) isotypic with hexagonal WO3. Both land III exhibit redox and acid-base intercalation reactivity characteristic of layered and tunnel structures.