976 resultados para Smart meter, Microcontrollore, Wireless, Risparmio energetico, Domotica


Relevância:

40.00% 40.00%

Publicador:

Resumo:

I rifiuti rappresentano un’opportunità di crescita sostenibile in termini di riduzione del consumo di risorse naturali e di sviluppo di tecnologie per il riciclo di materia ed il recupero energetico. Questo progetto di ricerca si occupa di valutare, attraverso l’approccio dello studio del ciclo di vita, la valorizzazione energetica di una particolare categoria di rifiuti: i fanghi derivanti dalla depurazione delle acque. Si è studiata la valorizzazione dei fanghi attraverso l’applicazione del Thermo Catalytic Re-forming (TCR)®, tecnologia che consente di trasformare i fanghi in un carburante per la produzione di energia elettrica (bioliquido). Le valutazioni sono effettuate per una linea di processo generale e due configurazioni progettuali declinate in due scenari. Il caso di studio è stato riferito al depuratore di S. Giustina (Rimini). Per la linea di processo, per ognuna delle configurazioni e i relativi scenari, è stato compilato il bilancio energetico e di massa e, conseguentemente, valutata l’efficienza energetica del processo. Le regole della Renewable Energy Directive (RED), applicate attraverso lo strumento ‘BioGrace I’, permettono di definire il risparmio di gas serra imputabile al bioliquido prodotto. I risultati mostrano che adottare la tecnologia TRC® risulta essere energeticamente conveniente. Infatti, è possibile ricavare dal 77 al 111% del fabbisogno energetico di una linea di processo generale (linea fanghi convenzionale e recupero energetico TCR®). Questo permette, quindi, di ricavare energia utile al processo di depurazione. La massima performance si realizza quando la tecnologia si trova a valle di una linea di trattamento fanghi priva di digestione anaerobica e se il biochar prodotto viene utilizzato come combustibile solido sostitutivo del carbone. La riduzione delle emissioni imputabile al bioliquido prodotto va dal 53 al 75%, valori che soddisfano il limite definito dalla RED del 50% di riduzione delle emissioni (2017) per ogni configurazione progettuale valutata.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La seguente tesi ha come scopo la progettazione e la realizzazione di un sistema intelligente per la gestione e il monitoraggio dell'acqua in impianti facenti uso di docce attraverso 'l'Internet Of Things', con l'obiettivo di ridurre gli sprechi favorendo cosi un risparmio sia di tipo energetico sia di tipo idrico. Stabiliti i requisiti si passa alla fase di progettazione dove vengono analizzate tutte le funzionalità che il sistema deve soddisfare. Segue la fase di implementazione, il cui scopo e realizzare concretamente le funzionalità producendo un prototipo iniziale. Quest'ultimo sara sottoposto ad eventuali test per verificare il corretto funzionamento del sistema e delle singole parti che lo costituiscono.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reliable data transfer is one of the most difficult tasks to be accomplished in multihop wireless networks. Traditional transport protocols like TCP face severe performance degradation over multihop networks given the noisy nature of wireless media as well as unstable connectivity conditions in place. The success of TCP in wired networks motivates its extension to wireless networks. A crucial challenge faced by TCP over these networks is how to operate smoothly with the 802.11 wireless MAC protocol which also implements a retransmission mechanism at link level in addition to short RTS/CTS control frames for avoiding collisions. These features render TCP acknowledgments (ACK) transmission quite costly. Data and ACK packets cause similar medium access overheads despite the much smaller size of the ACKs. In this paper, we further evaluate our dynamic adaptive strategy for reducing ACK-induced overhead and consequent collisions. Our approach resembles the sender side's congestion control. The receiver is self-adaptive by delaying more ACKs under nonconstrained channels and less otherwise. This improves not only throughput but also power consumption. Simulation evaluations exhibit significant improvement in several scenarios

Relevância:

40.00% 40.00%

Publicador:

Resumo:

n this paper, we present the design and implementation of a prototype system of Smart Parking Services based on Wireless Sensor Networks (WSNs) that allows vehicle drivers to effectively find the free parking places. The proposed scheme consists of wireless sensor networks, embedded web-server, central web-server and mobile phone application. In the system, low-cost wireless sensors networks modules are deployed into each parking slot equipped with one sensor node. The state of the parking slot is detected by sensor node and is reported periodically to embedded web-server via the deployed wireless sensor networks. This information is sent to central web-server using Wi-Fi networks in real-time, and also the vehicle driver can find vacant parking lots using standard mobile devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data la sempre maggiore richiesta di fabbisogno energetico, si è sviluppata una nuova filosofia nella gestione dei consumi energetici, il DSM (demand side management), che ha lo scopo di incoraggiare il consumatore ad usare energia in modo più intelligente e coscienzioso. Questo obiettivo, unito all’accumulo di energia da fonti rinnovabili, permetterà un abbassamento dell’utilizzo dell’energia elettrica proveniente dal consumo di fonti non rinnovabili e altamente inquinanti come quelle a combustibili fossili ed una diminuzione sia del consumo energetico, sia del costo per produrre energia che dell’energia stessa. L’home automation e la domotica in ambiente domestico rappresentano un esempio di DSM. L’obiettivo di questa tesi è quello di creare un sistema di home automation utilizzando tecnologie opensource. Sono stati utilizzati device come board Arduino UNO, Raspberry Pi ed un PC con sistema operativo GNU/Linux per creare una simulazione di un sistema di home automation abbinato alla gestione di celle fotovoltaiche ed energy storaging. Il sistema permette di poter spegnere un carico energetico in base a delle particolari circostanze come, per esempio, il superamento di una certa soglia di consumo di energia elettrica. Il software utilizzato è opensource e mira a poter ottimizzare il consumo energetico secondo le proprie finalità. Il tutto a dimostrare che si può creare un sistema di home automation da abbinare con il presente e futuro delle fonti rinnovabili utilizzando tecnologie libere in modo tale da preservare privacy e security oltre che customizzazione e possibilità di adattamento a diverse circostanze. Nella progettazione del sistema è stato implementato un algoritmo per gestire varie situazioni all’interno di un ambiente domestico. La realizzazione di tale algoritmo ha prodotto ottimi risultati nella raggiungimento degli obiettivi prefissati. Il progetto di questa tesi può essere ulteriormente ampliato ed il codice è reperibile in un repository pubblico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract]: Traditional technology adoption models identified ‘ease of use’ and ‘usefulness’ as the dominating factors for technology adoption. However, recent studies in healthcare have established that these two factors are not always reliable on their own and other factors may influence technology adoption. To establish the identity of these additional factors, a mixed method approach was used and data were collected through interviews and a survey. The survey instrument was specifically developed for this study so that it is relevant to the Indian healthcare setting. We identified clinical management and technological barriers as the dominant factors influencing the wireless handheld technology adoption in the Indian healthcare environment. The results of this study showed that new technology models will benefit by considering the clinical influences of wireless handheld technology, in addition to known factors. The scope of this study is restricted to wireless handheld devices such as PDAs, smart phones, and handheld PCs Gururajan, Raj and Hafeez-Baig, Abdul and Gururajan, Vijaya

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of degradations in adaptive digital beam-forming (DBF) systems caused by mutual coupling between array elements. The focus is on compact arrays with reduced element spacing and, hence, strongly coupled elements. Deviations in the radiation patterns of coupled and (theoretically) uncoupled elements can be compensated for by weight-adjustments in DBF, but SNR degradation due to impedance mismatches cannot be compensated for via signal processing techniques. It is shown that this problem can be overcome via the implementation of a RF-decoupling-network. SNR enhancement is achieved at the cost of a reduced frequency bandwidth and an increased sensitivity to dissipative losses in the antenna and matching network structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper looks at the accuracy of using the built-in camera of smart phones and free software as an economical way to quantify and analyse light exposure by producing luminance maps from High Dynamic Range (HDR) images. HDR images were captured with an Apple iPhone 4S to capture a wide variation of luminance within an indoor and outdoor scene. The HDR images were then processed using Photosphere software (Ward, 2010.) to produce luminance maps, where individual pixel values were compared with calibrated luminance meter readings. This comparison has shown an average luminance error of ~8% between the HDR image pixel values and luminance meter readings, when the range of luminances in the image is limited to approximately 1,500cd/m2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The invention relates to a method for monitoring user activity on a mobile device, comprising an input and an output unit, comprising the following steps preferably in the following order: detecting and / or logging user activity on said input unit, identifying a foreground running application, hashing of a user-interface-element management list of the foreground running application, and creating a screenshot comprising items displayed on said input unit. The invention also relates to a method for analyzing user activity at a server, comprising the following step: obtaining at least one of an information about detected and / or logged user activity, an information about a foreground running application, a hashed user-interface-element management list and a screenshot from a mobile device. Further, a computer program product is provided, comprising one or more computer readable media having computer executable instructions for performing the steps of at least one of the aforementioned methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this chapter, the role of State Estimation (SE) in smart power grids is presented. The trend of SE error with respect to the increasing of the smart grids implementation investigated. The observability analysis as a prior task of SE is demonstrated and an analytical method to consider the impedance values of the branches is developed and discussed by examples. Since most principles of smart power grids are appropriate to distribution networks, the Distribution SE (DSE)considering load correlation is argued and illustrated by an example. The main features of smart grid SE, which is here named as “Smart Distributed SE” (SDSE), are discussed. Some characteristics of proposed SDES are distributed, hybrid, multi-micro grid and islanding support, Harmonic State Estimation (HSE), observability analysis and restore, error processing, and network parameter estimation. Distribution HSE (DHSE) and meter placement for SDSE are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.