929 resultados para Small Signal Stability
Resumo:
The small signal ac response is measured across the source-drain terminals of organic field-effect transistors (OFET) under dc bias to obtain the equivalent circuit parameters of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) and poly(3-hexyl thiophene) (P3HT) based devices. The numerically simulated response based on these parameters is in good agreement with the experimental data for PBTTT-FET except at low frequencies, while the P3HT-FET data show significant deviations. This indicates that the interface with the metal electrode is rather complex for the latter, involving additional circuit elements arising from contact impedance or charge injection processes. Such an investigation can help in identifying the operational bottlenecks and to improve the performance of OFETs.
Resumo:
Polycrystalline strontium titanate (SrTiO3) films were prepared by a pulsed laser deposition technique on p-type silicon and platinum-coated silicon substrates. The films exhibited good structural and dielectric properties which were sensitive to the processing conditions. The small signal dielectric constant and dissipation factor at a frequency of 100 kHz were about 225 and 0.03 respectively. The capacitance-voltage (C-V) characteristics in metal-insulator-semiconductor structures exhibited anomalous frequency dispersion behavior and a hysteresis effect. The hysteresis in the C-V curve was found to be about 1 V and of a charge injection type. The density of interface states was about 1.79 x 10(12) cm(-2). The charge storage density was found to be 40 fC mu m(-2) at an applied electric field of 200 kV cm(-1). Studies on current-voltage characteristics indicated an ohmic nature at lower voltages and space charge conduction at higher voltages. The films also exhibited excellent time-dependent dielectric breakdown behavior.
Resumo:
This paper presents the analysis and study of voltage collapse at any converter bus in A C-DC systems considering the dynamics of DC system. The problem of voltage instability is acute when HVDC links are connected to weak AC systems, the strength determined by short circuit ratio (SCR) at the converter bus. The converter control strategies are important in determining voltage instability. Small signal analysis is used to identify critical modes and evaluate the effect of AC system strength and control parameters. A sample two-terminal DC system is studied and the results compared with those obtained from static analysis. Also, the results obtained from small signal analysis are validated with nonlinear simulation.
Resumo:
The reversible and irreversible components of the total polarization in a thin film of SrBi2(Ta-0.5,Nb-0.5)(2)O-9 were calculated. The C-V loop was integrated to obtain the reversible part of the total polarization. The reversible polarization was only 20% of the total polarization and showed almost no hysteresis. However, the dielectric constant due to the total polarization was almost the same as that for the reversible polarization in the saturation region of the large signal P-E hysteresis loop. The reversible part was subtracted from the total polarization to calculate the irreversible counterpart of it. The irreversible polarization showed a near-square shaped hysteresis loop, while the reversible polarization was obeying the Rayleigh law. The small signal hysteresis was simulated from the parameters obtained from the Rayleigh-curve fit with the experimental curve and then it was compared with the result obtained from direct measurement with small amplitude. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The mechanism of field induced phase switching in antiferroelectric lead zirconate and La-modified lead zirconate thin films has been analysed in terms of reversible and irreversible switching process under weak fields as a function of donor concentration. Extension of Rayleigh law of ferromagnetic materials to the present antiferroelectric and modified antiferroelectric compositions have clearly showed that origin of small signal dielectric permittivity is due to reversible domain wall motion. Rayleigh's constant, a measure of irreversible switching process, exhibited a slight increase with lower La3+ concentrations and followed by a gradual fall for higher concentration. This clearly illustrates that donor addition to antiferroelectric thin films controls the domain switching even under weak fields. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper proposes a nonlinear voltage regulator with one tunable parameter for multimachine power systems. Based on output feedback linearization, this regulator can achieve simultaneous voltage regulation and small-signal performance objectives. Conventionally output feedback linearization has been used for voltage regulator design by taking infinite bus voltage as reference. Unfortunately, this controller has poor small-signal performance and cannot be applied to multimachine systems without the estimation of the equivalent external reactance seen from the generator. This paper proposes a voltage regulator design by redefining the rotor angle at each generator with respect to the secondary voltage of the step-up transformer as reference instead of a common synchronously rotating reference frame. Using synchronizing and damping torques analysis, we show that the proposed voltage regulator achieves simultaneous voltage regulation and damping performance over a range of system and operating conditions by controlling the relative angle between the generator internal voltage angle delta and the secondary voltage of the step up transformer. The performance of the proposed voltage regulator is evaluated on a single machine infinite bus system and two widely used multimachine test systems.
Resumo:
Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi‐one‐dimensional nonreacting flow in the supersonic nozzle of CO2–N2–H2O and CO2–N2–He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small‐signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed.
Resumo:
A new method for producing simultaneous lasing at 10.6 μm and 38.3 μm in a CO2‐N2‐CS2 gasdynamic laser is presented. The theoretical analysis predicts small‐signal gain values of the order 0.21 m−1 for 10.6 μm lasing in CO2 molecules and 0.085 m−1 for 38.3 μm lasing in CS2 molecules, indicating the possibility of dual wave lasing.
Resumo:
In a supersonic chemical oxygen-iodine laser (COIL) operating without primary buffer gas, the features of flowfield have significant effects on the Laser efficiency and beam quality. In this paper three-dimensional, multi-species, chemically reactive CFD technology was used to study the flowfield in mixing nozzle implemented with a supersonic interleaving jet configuration. The features of the flowfield as well as its effect on the spatial distribution of small signal gain were analyzed.
Resumo:
A two-dimensional simplified model of an HF chemical laser is introduced. Using an implicit finite difference scheme, the solution of two adjacent parallel streams with diffusion mixing and chemical reaction is generated. A contour of mixing and reaction boundary is obtained without presupposition. The distribution of the HF(v) concentrations, gas temperature and the optical small signal gain (alpha sub V, J) on the flowing plane (X, Y) are presented. Compared with the solution solved directly from a set of Navier-Stokes equations, the results of these two methods agree with each other qualitatively. The influences of the different velocity, temperature (T sub 0) and composition of the two streams on the small signal gain after the nozzle exit are investigated. It is interesting that for larger J with a fixed v, the peaks of alpha sub v-T sub 0 profiles move towards higher T sub 0. The computing method is simple and only a short computing time is needed.
Resumo:
In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.
A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.
In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.
A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
对描述双掺杂晶体非挥发性全息记录动力学过程的Kukhtarev方程进行了矢量分析, 分析中考虑了体光生伏特效应和外加电场的作用。在小信号近似的基础上给出了双中心全息记录中记录与固定阶段空间电荷场的矢量解析解。在综合考虑空间电荷场的各向异性以及晶体有效电光系数的各向异性后, 给出了双中心全息记录的优化记录方向。结果表明, 对(Fe, Mn):LiNbO3晶体633 nm寻常光记录, 优化记录方向主要由有效电光系数决定, 光栅波矢与光轴夹角为22°, 方位角为30°;对(Fe, Mn):LiNbO3晶体633
Resumo:
从耦合波方程出发,分别在小信号、高功率(1.5 GW/cm2)条件下研究KDP晶体串接三次谐波转换。当两块混频晶体的长度选择为8 mm和6 mm,晶体分别偏离原混频匹配角0.35 mrad和-0.25 mrad时可以有0.3 nm的谐波转换带宽,同时系统的三次谐波转换效率与两块混频晶体之间的距离有密切关系,当两块晶体之间的距离使从第一块混频晶体出射的光波之间的相位差改变π时,会使第一块混频晶体产生的三次谐波大部分回流到基频和倍频光,从而使转换效率大幅度下降,最合适的距离应当使光波之间的相位差改变为2π。
Resumo:
对高功率脉冲双包层光纤激光器的国内外研究进展进行评述,通过建立了小信号瞬态增益模型,对脉冲激光信号经过双包层光纤放大后的波形进行了数值模拟。分析了基于MOPA方式脉冲双包层光纤激光器的几个问题,报道了中科院上海光机所采用振荡-放大(MOPA)方法获得133.8W平均功率脉冲放大输出的实验结果。