881 resultados para Sleep Onset Latency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We hypothesized that feeding pregnant rats with a high-fat diet would increase both circulating 17β-estradiol (E2) levels in the dams and the risk of developing carcinogen-induced mammary tumors among their female offspring. Pregnant rats were fed isocaloric diets containing 12% or 16% (low fat) or 43% or 46% (high fat) of calories from corn oil, which primarily contains the n − 6 polyunsaturated fatty acid (PUFA) linoleic acid, throughout pregnancy. The plasma concentrations of E2 were significantly higher in pregnant females fed a high n − 6 PUFA diet. The female offspring of these rats were fed with a laboratory chow from birth onward, and when exposed to 7,12-dimethylbenz(a)anthracene had a significantly higher mammary tumor incidence (60% vs. 30%) and shorter latency for tumor appearance (11.4 ± 0.5 weeks vs. 14.2 ± 0.6 weeks) than the offspring of the low-fat mothers. The high-fat offspring also had puberty onset at a younger age, and their mammary glands contained significantly higher numbers of the epithelial structures that are the targets for malignant transformation. Comparable changes in puberty onset, mammary gland morphology, and tumor incidence were observed in the offspring of rats treated daily with 20 ng of E2 during pregnancy. These data, if extrapolated to humans, may explain the link among diet, early puberty onset, mammary parenchymal patterns, and breast cancer risk, and indicate that an in utero exposure to a diet high in n − 6 PUFA and/or estrogenic stimuli may be critical for affecting breast cancer risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular responses to neural activity are exploited as the basis of a number of brain imaging techniques. The vascular response is thought to be too slow to resolve the temporal sequence of events involved in cognitive tasks, and hence, imaging studies of mental chronometry have relied on techniques such as the evoked potential. Using rapid functional MRI (fMRI) of single trials of two simple behavioral tasks, we demonstrate that while the microvascular response to the onset of neural activity is delayed consistently by several seconds, the relative timing between the onset of the fMRI responses in different brain areas appears preserved. We examined a number of parameters that characterize the fMRI response and determined that its onset time is best defined by the inflection point from the resting baseline. We have found that fMRI onset latencies determined in this manner correlate well with independently measurable parameters of the tasks such as reaction time or stimulus presentation time and can be used to determine the origin of processing delays during cognitive or perceptual tasks with a temporal accuracy of tens of milliseconds and spatial resolution of millimeters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recordings were obtained from the visual system of rats as they cycled normally between waking (W), slow-wave sleep (SWS), and rapid eye movement (REM) sleep. Responses to flashes delivered by a light-emitting diode attached permanently to the skull were recorded through electrodes implanted on the cornea, in the chiasm, and on the cortex. The chiasm response reveals the temporal order in which the activated ganglion cell population exits the eyeball; as reported, this triphasic event is invariably short in latency (5–10 ms) and around 300 ms in duration, called the histogram. Here we describe the differences in the histograms recorded during W, SWS, and REM. SWS histograms are always larger than W histograms, and an REM histogram can resemble either. In other words, the optic nerve response to a given stimulus is labile; its configuration depends on whether the rat is asleep or awake. We link this physiological information with the anatomical fact that the brain dorsal raphe region, which is known to have a sleep regulatory role, sends fibers to the rat retina and receives fibers from it. At the cortical electrode, the visual cortical response amplitudes also vary, being largest during SWS. This well known phenomenon often is explained by changes taking place at the thalamic level. However, in the rat, the labile cortical response covaries with the labile optic nerve response, which suggests the cortical response enhancement during SWS is determined more by what happens in the retina than by what happens in the thalamus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligands acting at the benzodiazepine (BZ) site of γ-aminobutyric acid type A (GABAA) receptors currently are the most widely used hypnotics. BZs such as diazepam (Dz) potentiate GABAA receptor activation. To determine the GABAA receptor subtypes that mediate the hypnotic action of Dz wild-type mice and mice that harbor Dz-insensitive α1 GABAA receptors [α1 (H101R) mice] were compared. Sleep latency and the amount of sleep after Dz treatment were not affected by the point mutation. An initial reduction of rapid eye movement (REM) sleep also occurred equally in both genotypes. Furthermore, the Dz-induced changes in the sleep and waking electroencephalogram (EEG) spectra, the increase in power density above 21 Hz in non-REM sleep and waking, and the suppression of slow-wave activity (SWA; EEG power in the 0.75- to 4.0-Hz band) in non-REM sleep were present in both genotypes. Surprisingly, these effects were even more pronounced in α1(H101R) mice and sleep continuity was enhanced by Dz only in the mutants. Interestingly, Dz did not affect the initial surge of SWA at the transitions to sleep, indicating that the SWA-generating mechanisms are not impaired by the BZ. We conclude that the REM sleep inhibiting action of Dz and its effect on the EEG spectra in sleep and waking are mediated by GABAA receptors other than α1, i.e., α2, α3, or α5 GABAA receptors. Because α1 GABAA receptors mediate the sedative action of Dz, our results provide evidence that the hypnotic effect of Dz and its EEG “fingerprint” can be dissociated from its sedative action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Narcolepsy-cataplexy is a sleep-wake disorder and suggested to be immune-mediated, involving genetic and environmental factors. The autoimmune process eventually leads to a loss of hypocretin neurons in the lateral hypothalamus. Epidemiological studies in several countries proved an increased incidence of narcolepsy after H1N1 flu vaccination and infection. This survey in 30 sleep centers in Switzerland led to the identification of 9 H1N1-vaccinated children and adults as newly diagnosed narcolepsy. Clinical features included the abrupt and severe onset of sleepiness, cataplexy and sleep fragmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Sleep-disordered breathing (SDB) is very common in acute stroke patients and has been related to poor outcome. However, there is a lack of data about the association between SDB and stroke in developing countries. The study aims to characterize the frequency and severity of SDB in Brazilian patients during the acute phase of ischemic stroke; to identify clinical and laboratorial data related to SDB in those patients; and to assess the relationship between sleep apnea and functional outcome after six months of stroke. METHODS Clinical data and laboratorial tests were collected at hospital admission. The polysomnography was performed on the first night after stroke symptoms onset. Functional outcome was assessed by the modified Rankin Scale (mRS). RESULTS We prospectively evaluated 69 patients with their first-ever acute ischemic stroke. The mean apnea-hypopnea index (AHI) was 37.7 ± 30.2. Fifty-three patients (76.8%) exhibited an AHI ≥ 10 with predominantly obstructive respiratory events (90.6%), and thirty-three (47.8%) had severe sleep apnea. Age (OR: 1.09; 95% CI: 1.03-1.15; p= 0.004) and hematocrit (OR: 1.18; 95% CI: 1.03-1.34; p= 0.01) were independent predictors of sleep apnea. Age (OR: 1.13; 95% CI: 1.03-1.24; p= 0.01), body mass index (OR: 1.54; 95% CI: 1.54-2.18; p= 0.01), and hematocrit (OR: 1.19; 95% CI: 1.01-1.40; p= 0.04) were independent predictors of severe sleep apnea. The National Institutes of Health Stroke Scale (NIHSS; OR: 1.30; 95% CI: 1.1-1.5; p= 0.001) and severe sleep apnea (OR: 9.7; 95% CI: 1.3-73.8; p= 0.03) were independently associated to mRS >2 at six months, after adjusting for confounders. CONCLUSION Patients with acute ischemic stroke in Brazil have a high frequency of SDB. Severe sleep apnea is associated with a poor long-term functional outcome following stroke in that population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the ATM gene (mutated in ataxia telangiectasia) in both humans and mice predispose to lymphoid tumors. A defect in this gene also causes neurodegeneration in humans and a less severe neurological phenotype in mice. There is some evidence that oxidative stress contributes to these defects, suggesting that antioxidants could alleviate the phenotype. We demonstrate here that the antioxidant 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) dramatically delays the onset of thymic lymphomas in Atm(-/-) mice which is not due to an enhancement of apoptosis by CTMIO. We also show that this compound corrects neurobehavioral deficits in these mice and reduces oxidative damage to Purkinje cells. The likely mechanism of action of CTMIO is due to a reduction in oxidative stress, which is protective against both the tumor progression and the development of neurological abnormalities. These data suggest that antioxidant therapy has considerable potential in the management of ataxia telangiectasia and possibly other neurodegenerative disorders where oxidative stress is implicated. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In disorders such as sleep apnea, sleep is fragmented with frequent EEG-arousal (EEGA) as determined via changes in the sleep-electroencephalogram. EEGA is a poorly understood, complicated phenomenon which is critically important in studying the mysteries of sleep. In this paper we study the information flow between the left and right hemispheres of the brain during the EEGA as manifested through inter-hemispheric asynchrony (IHA) of the surface EEG. EEG data (using electrodes A1/C4 and A2/C3 of international 10-20 system) was collected from 5 subjects undergoing routine polysomnography (PSG). Spectral correlation coefficient (R) was computed between EEG data from two hemispheres for delta-delta(0.5-4 Hz), theta-thetas(4.1-8 Hz), alpha-alpha(8.1-12 Hz) & beta-beta(12.1-25 Hz) frequency bands, during EEGA events. EEGA were graded in 3 levels as (i) micro arousals (3-6 s), (ii) short arousals (6.1-10 s), & (iii) long arousals (10.1-15 s). Our results revealed that in beta band, IHA increases above the baseline after the onset of EEGA and returns to the baseline after the conclusion of event. Results indicated that the duration of EEGA events has a direct influence on the onset of IHA. The latency (L) between the onset of arousals and IHA were found to be L=2plusmn0.5 s (for micro arousals), 4plusmn2.2 s (short arousals) and 6.5plusmn3.6 s (long arousals)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was studied in five normal subjects using a single channel BTi magnetometer. Topographic distributions were analysed at regular intervals following stimulus onset (chronotopograpby). Two distinct field distributions were observed with half field stimulation: (1) activity corresponding to the C11 m which remains stable for an average of 34 msec and (2) activity corresponding to the C111 m which remains stable for about 50 msec. However, the full field topography of the largest peak within the first 130 msec does not have a predictable latency or topography in different subjects. The data suggest that the appearance of this peak is dependent on the amplitude, latency and duration of the half field C11 m peaks and the efficiency of half field summation. Hence, topographic mapping is essential to correctly identify the C11 m peak in a full field response as waveform morphology, peak latency and polarity are not reliable indicators. © 1993.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was investigated using 4 check sizes and 3 contrast levels. The pattern onset response consists of three early components within the first 200ms, CIm, CIIm and CIIIm. The CIIm is usually of high amplitude and is very consistent in latency within a subject. Half field (HF) stimuli produce their strongest response over the contralateral hemisphere; the RHF stimulus exhibiting a lower positivity (outgoing field) and an upper negativity (ingoing field), rotated towards the midline. LHF stimulation produced the opposite response, a lower negative and an upper positive. Larger check sizes produce a single area of ingoing and outgoing field while smaller checks produce on area of ingoing and outgoing field over each hemisphere. Latency did not appear to vary with change in contrast but amplitudes increased with increasing contrast. A more detailed topographic study incorporating source localisation procedures suggested a source for CIIm - 4cm below the scalp, close to the midline with current flowing towards the lateral surface. Similar depth and position estimates but with opposite polarity were obtained for the pattern shift P100m previously. Hence, the P100m and the CIIm may originate in similar areas of visual cortex but reveal different aspects of visual processing. © 1992 Human Sciences Press, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study characterizes the visually evoked magnetic response (VEMR) to pattern onset/offset stimuli, using a single channel BTi magnetometer. The influence of stimulus parameters and recording protocols on the VEMR is studied with inferences drawn about the nature of cortical processing, its origins and optimal recording strategies. Fundamental characteristics are examined, such as the behaviour of successive averaged and unaveraged responses; the effects of environmental shielding; averaging; inter- and intrasubject variability and equipment specificity. The effects of varying check size, field size, contrast and refractive error on latency, amplitude and topographic distribution are also presented. Latency and amplitude trends are consistent with previous VEP findings and known anatomical properties of the visual system. Topographic results are consistent with the activity of sources organised according to the cruciform model of striate cortex. A striate origin for the VEMR is also suggested by the results to quarter, octant and annulus field stimuli. Similarities in the behaviour and origins of the sources contributing to the CIIm and CIIIm onset peaks are presented for a number of stimulus conditions. This would be consistent with differing processing event in the same, or similar neuronal populations. Focal field stimuli produce less predictable responses than full or half fields, attributable to a reduced signal to noise ratio and an increased sensitivity to variations in cortical morphology. Problems with waveform peak identification are encountered for full field stimuli that can only be resolved by the careful choice of stimulus parameters, comparisons with half field responses or with reference to the topographic distribution of each waveform peak. An anatomical study of occipital lobe morphology revealed large inter- and intrasubject variation in calcarine fissure shape and striate cortex distribution. An appreciation of such variability is important for VEMR interpretation, due to the technique's sensitivity to source depth and orientation, and it is used to explain the experimental results obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two elcctrophysiological tests currently favoured in the clinical measurement of hearing threshold arc the brainstorm evoked potential (BAEP) and the slow vertex response (SVR). However, both tests possess disadvantages. The BAEP is the test of choice in younger patients as it is stable at all levels of arousal, but little information has been obtained to date at a range of frequencies. The SVR is frequency specific but is unreliable in certain adult subjects and is unstable during sleep or in young children. These deficiencies have prompted research into a third group of potentials, the middle latency response (MLR) and the 40HZ responses. This research has compared the SVR and 40HZ response in waking adults and reports that the 40HZ test can provide a viable alternative to the SVR provided that a high degree of subject relaxation is ensured. A second study examined the morphology of the MLR and 40HZ during sleep. This work suggested that these potentials arc markedly different during sleep and that methodological factors have been responsible for masking these changes in previous studies. The clinical possibilities of tone pip BAEPs were then examined as these components were proved to be the only stable responses present in sleep. It was found that threshold estimates to 5OOHz, lOOOHz and 4000Hz stimuli could be made to within 15dBSL in most cases. A final study looked more closely at methods of obtaining frequency specific information in sleeping subjects. Threshold estimates were made using established BAEP parameters and this was compared to a 40HZ procedure which recorded a series of BAEPs over a 100msec. time sweep. Results indicated that the 40mHz procedure was superior to existing techniques in estimating threshold to low frequency stimuli. This research has confirmed a role for the MLR and 40Hz response as alternative measures of hearing capability in waking subjects and proposes that the 40Hz technique is useful in measuring frequency specific thresholds although the responses recorded derive primarily from the brainstem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the central nervous system, iron in several proteins is involved in many important processes: oxygen transportation, oxidative phosphorylation, mitochondrial respiration, myelin production, the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation, modification of lipids, proteins, carbohydrates, and DNA, lead to neurotoxicity. Moreover increased levels of iron are harmful and iron accumulations are typical hallmarks of brain ageing and several neurodegenerative disorders particularly PD. Numerous studies on post mortem tissue report on an increased amount of total iron in the substantia nigra in patients with PD also supported by large body of in vivo findings from Magnetic Resonance Imaging (MRI) studies. The importance and approaches for in vivo brain iron assessment using multiparametric MRI is increased over last years. Quantitative MRI may provide useful biomarkers for brain integrity assessment in iron-related neurodegeneration. Particularly, a prominent change in iron- sensitive T2* MRI contrast within the sub areas of the SN overlapping with nigrosome 1 were shown to be a hallmark of Parkinson's Disease with high diagnostic accuracy. Moreover, differential diagnosis between Parkinson's Disease (PD) and atypical parkinsonian syndromes (APS) remains challenging, mainly in the early phases of the disease. Advanced brain MR imaging enables to detect the pathological changes of nigral and extranigral structures at the onset of clinical manifestations and during the course of the disease. The Nigrosome-1 (N1) is a substructure of the healthy Substantia Nigra pars compacta enriched by dopaminergic neurons; their loss in Parkinson’s disease and atypical parkinsonian syndromes is related to the iron accumulation. N1 changes are supportive MR biomarkers for diagnosis of these neurodegenerative disorders, but its detection is hard with conventional sequences, also using high field (3T) scanner. Quantitative susceptibility mapping (QSM), an iron-sensitive technique, enables the direct detection of Neurodegeneration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disorders of Arousal (DoA) belong to NREM parasomnias and are characterized by motor and emotional episodes arising from incomplete awakenings from NREM sleep. DoA episodes embody at the same time the double nature of the arousal process, that is preserving sleep as well as respond to sleep perturbations, thus being an ideal model to study sleep arousal. In the first part of this work, we performed a spectral whole scalp EEG analysis exploring the neurophysiologic correlates of the pre-motor onset of the episodes in a large sample of patients with DoA, disclosing the co-existence of both slow and fast EEG frequencies over overlapping areas before DoA episodes, suggesting an alteration of local sleep mechanisms. Episodes of different complexity were preceded by a similar EEG activation, implying that they possibly share a similar pathophysiology. In the second part of this work, we performed a spectral whole scalp EEG analysis comparing the pre-motor onset of the episodes and normal arousals from healthy sleepers, disclosing the persistence of slow frequencies as well as sigma band (expression of sleep spindles) in DoA episodes. Overall, these results might subtend a higher tendence to preserve sleep and a more defective mechanism toward developing a complete arousal in patients with DoA. In the last part of our work, we evaluated 15 patients with DoA with 15 controls in a functional MRI study during wakefulness in addition to a proton magnetic resonance spectroscopy (1H-MRS) focused on cingulate cortex. We disclosed subtle alterations on posterior cingulate cortex as well as an increased connectivity in sensory-motor network, possibly representing a trait-functional feature responsible for the dysfunctional arousal process in DoA patients

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obstructive sleep apnea syndrome has a high prevalence among adults. Cephalometric variables can be a valuable method for evaluating patients with this syndrome. To correlate cephalometric data with the apnea-hypopnea sleep index. We performed a retrospective and cross-sectional study that analyzed the cephalometric data of patients followed in the Sleep Disorders Outpatient Clinic of the Discipline of Otorhinolaryngology of a university hospital, from June 2007 to May 2012. Ninety-six patients were included, 45 men, and 51 women, with a mean age of 50.3 years. A total of 11 patients had snoring, 20 had mild apnea, 26 had moderate apnea, and 39 had severe apnea. The distance from the hyoid bone to the mandibular plane was the only variable that showed a statistically significant correlation with the apnea-hypopnea index. Cephalometric variables are useful tools for the understanding of obstructive sleep apnea syndrome. The distance from the hyoid bone to the mandibular plane showed a statistically significant correlation with the apnea-hypopnea index.