197 resultados para Skeggs, Beverly
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the harbours of Hampton, Newbury, Ipswich, Jebeka, Squam, Cape Ann, Manchester, Beverly, Salem, Marble Head &c.] (sheet originally published in 1776). The map is [sheet 23] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the southern portion of the map. Covers coastal Massachusetts from Ipswich Harbor to Marblehead. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the harbours of Hampton, Newbury, Ipswich, Jebeka, Squam, Cape Ann, Manchester, Beverly, Salem, Marble Head &c.] (sheet originally published in 1776). The map is [sheet 24] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers coastal Massachusetts and New Hampshire from Ipswich Harbor, Massachusetts to Hampton Harbor, New Hampshire. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of Essex County, Massachusetts : based upon the trigonometrical survey of the state the details, from actual surveys under the direction of H.F. Walling, superintendent of state map ; engd. by Geo. Worley & Wm. Bracher. It was published by Smith and Morley in 1856. Scale [ca. 1:50,000]. This layer is image 3 of 4 total images, representing the southwest portion of the four sheet source map.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and school district boundaries, and more. Relief shown by hachures. It includes many cadastral insets of individual county towns and villages. It also includes illustrations, business directories, and tables of statistics and distances.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey sheet map set entitled: Philadelphia and vicinity, east, 1955 (and west, 1956) (Pennsylvania - New Jersey) by the Geological Survey. It was published in 1958. Scale 1:24,000. Covers Philadelphia and portions of adjacent counties. Mapped by the Geological Survey, U.S. Coast and Geodetic Survey and Army Map Service. Compiled from 1:24,000 scale maps of Langhorne 1953, Hatboro 1952, Ambler 1952, Germantown 1952, Frankford 1950, Beverly 1955, Moorestown 1953, Camden 1949, Philadelphia 1949, Woodbury 1949, Rennemede 1952, and Clementon 1953 7.5 minute quadrangles. This layer is image 1 of 2 total images of the two sheet source map set representing the eastern portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD27 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey sheep map set entitled: Los Angeles and vicinity, East [and West], California. Edition 1953. It was published in 1956. Compiled from 1:24,000 scale maps of the Burbank 1953, Van Nuys 1953, Canoga Park 1952, Topanga 1952, Beverly Hills 1950, Hollywood 1953, Inglewood 1952, and Venice 1950 7.5 minute quadrangles. Hydrography compiled from USC&GS Chart 5144. Scale 1:24,000. This layer is image 2 of 2 total images of the two sheet source map set representing the western portion of the map set. The image inside the map neatline is georeferenced to the surface of the earth and fit to the California State Plane Zone V Coordinate System NAD27 (in Feet) (Fipszone 0405). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 5 and 25 feet. Depth curves in feet. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Eldridge's new chart from Lynn to Halibut Point : with the harbors of Salem, Beverly, Marblehead, Manchester, Gloucester & Rockport, compiled from the latest surveys, [by George Eldridge] ; G.W. Boynton, sc. It was published by S. Thaxter & Son, 1873. Scale [ca. 1:58,370]. This map is a nautical chart covering the Atlantic Coast of Massachusetts from Lynn to Halibut Point, Rockport, Massachusetts. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, and more. Depths are shown by soundings and shading. Includes sailing directions and table of tides. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Chart of Boston Harbor and Massachusetts Bay : with map of the adjacent country. It was published by E.P. Dutton & Co. at the Boston Map Store in 1865. Scale [ca. 1:65,400]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, and more. It also shows land features such as roads, railroads, drainage, residences, selected public buildings and places of industry (schools, churches, town halls, hospitals, factories, etc.), parks, cemeteries, township boundaries and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: The county of Essex, made by John G. Hales ; engraved by J.V.N. Throop. It was published June 19th, 1825. Scale [ca. 1:90,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, public buildings, churches, industry locations (e.g. mills, factories, mines, etc.), individual dwellings, town and county boundaries and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: An accurate map of the country round Boston in New England. It was originally published by Archibald Hamilton in Town and country magazine (London), Jan. 16, 1776. Scale [ca. 1:362,500]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, selected public buildings, town boundaries and more. Relief is shown by hachures. Includes ancillary map: A plan of Boston and Charlestown, from a drawing made in 1771, with index to points of interest. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Boston and its vicinity, by John G. Hales ; Edwin Gillingham, sc. It was published in 1819. Scale [1:63,360]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, selected public buildings, residences with selected names of property owners, industry locations (e.g. mills, factories, mines, etc.), town boundaries and more. Relief is shown by hachures and spot heights. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Boston and its vicinity, with corrections in 1833, by John G. Hales ; Edwin Gillingham, sc. It was published in 1833. Scale [ca. 1:63,360]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, selected public buildings, residences with selected names of property owners, industry locations (e.g. mills, factories, mines, etc.), town boundaries and more. Relief is shown by hachures and spot heights. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Salem, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886, the edition date is October, 1893 and this map has a reprint date of December, 1897. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
Since 1999, countries have voluntarily chosen to reform their higher education systems to join the European Higher Education Area. This paper compares Bologna Process implementation across four regions within the European Union. While there are 47 countries participating in the Bologna Process, this paper uses statistical analysis to consider 25 of the 28 EU Member States. The time period of analysis is 2000-2011, prior to Croatia’s accession to the EU on 1 July 2013. Across Europe there are inter-regional differences in how the Bologna Process has been implemented and in the political economy contexts that influence higher education reform for policy convergence. There are three explanatory variables in the political economy context: 1. competitive economic pressures and globalization 2. domestic politics at the national level 3. leadership from the supranational European Union that socially constructs regional norms Tertiary education attainment is the dependent variable of interest in this research. The objective of 40%, for 30-34 year olds, is Europe 2020 benchmark target. There are additional higher education reform criteria encompassed in the Bologna Process. These criteria concern Credit and Degree Structure, Quality Assurance, and Recognition of academic degrees among countries in the EHEA. This tertiary education attainment variable, which is of interest in this paper, does not capture the entire implementation process. Nevertheless, it is a measure of one important indicator of success in providing higher education access to populations within the context of democratic governance. This research finds that statistically GDP Per Capita is the most significant variable in relationship to tertiary education attainment across four regional areas in the European Union.
Resumo:
During the last week in April the Ministers responsible for higher education from 47 countries convened in Bucharest, Romania for the Ministerial Conference of the Bologna Process. On April 26 and 27, 2012 the venue for the meeting was the Palace of the Parliament, which was constructed by the dictator Nicolae Ceauşescu in 1984 and completed the year before his death by execution on Christmas Day 1989. One of the largest civilian buildings in the world was location for the first ministerial conference to take place since the European Higher Education Area (EHEA) became effective in 2010. Originally the creation of the EHEA was envisaged by the Bologna Process Declaration in 1999 which had representatives from 29 countries as signatories. This essay will describe the proceedings of the Ministerial Conference, report on the negotiations among delegates in parallel sessions and plenary sessions, discuss the thematic sessions with emphasis on “Global academic mobility: Incentives and barriers, balances and imbalances” and review the adoption of the Bucharest Communiqué and the Bologna Policy Forum Statement.
Resumo:
On July 15, 2014 the European Parliament confirmed the new European Commission President. An absolute majority was needed for this purpose, and the 422 votes “For” cleared the 376-vote threshold in the legislative body of 751 members. A Grand Coalition has been formed among the three largest political parties: the European People’s Party (EPP), the Progressive Alliances of Socialists Democrats (S&D), and the Alliance of Liberals and Democrats for Europe (ALDE). Considering policy decisions going forward, the European Union (EU) faces the pressing question: Will there be more, less, or similar power from the EU? There are a greater number voices from across the political spectrum contributing to the democratic plurality. European leaders may regain trust by acknowledging that future governance will not be “business as usual” as the reform agenda gets underway. 2014 has been an exciting and important year in European politics. “This time is different” was the motto for the European Parliament’s election campaign. This essay analyzes recent EU political trends with the new Commission leadership and the Parliamentary elections results. The Parliamentary elections, held in late May, and the new European Commission, planned to be in place in the autumn, influence the leadership direction of the 28-member bloc. Additionally, this year on July 1 Croatia celebrated the first anniversary of joining the EU in 2013. Leading the way for candidate countries, Croatia embraces the democratic politics and capitalist market economics embodied by the EU. The greater number of seats held by newer political parties in the European Parliament demonstrates increasing plurality in the EU democracy. The Parliamentary elections have taken place every 5 years since 1979. In this eighth legislative session, the EPP and the S&D remain the largest parties represented, with 221 and 191 seats respectively. As the EU has evolved, a greater number of voices influence politics. The ongoing point of contention on a host of policies is national sovereignty in relation to pooled sovereignty in the EU. The European Parliament is important for democracy in EU governance since it is the direct link from the national citizens to their elected leaders at the supranational level. The representatives of the European Commission are appointed by the national governments of Member States, and their heads of government are the representatives to the European Council. These three political institutions – the European Parliament, the European Commission, and the European Council – together with other important institutions, including the European Court of Justice Luxembourg, form the EU. The new European Commission President is Jean-Claude Juncker, former Prime Minister and Minister of Finance of Luxembourg (1995-2013). After being nominated by the European Council on June 27, his candidacy was voted on by the European Parliament on July 15, according to the guidelines of the Lisbon Treaty. The leadership for the President of the European Commission has been an important issue, considering Britain’s deliberations on whether or not to stay in the EU in the face of a future national referendum. Voting on June 27, among the European Council on the nomination of Commission President-Designate Juncker, was 26 in favor and 2 opposed. Only Viktor Orbán, the prime minister of Hungary, joined David Cameron, the prime minister of the United Kingdom (UK), with a negative vote (Spiegel and Parker 2014). The UK had not been supportive, being concerned that Juncker embraces the policies of a federalist, prioritizing an ever-closer union above the interests of individual Member States. Historically, since joining the predecessor institution of the European Economic Community in 1973, the UK has had a relatively independent attitude about participation in the EU.