982 resultados para Simulazione dinamica swirl motori Diesel
Resumo:
Physical and chemical properties of biofuels vary among various feedstocks and their subsequent conversions to fuels. The biofuels contain various amounts of oxygen, and this has a significant influence on exhaust emission. This oxygen content has been considered in order to investigate its effect on diesel engine exhaust emissions. The experiments have been conducted with a heavy duty diesel engine and various oxygenated fuels. It is found that the amount of oxygen in the fuel has a high level of influence on its exhaust emissions, and this provides agreement with diesel emissions results such as PN reduction. By increasing the amount of oxygen in the blend (by adding more biofuel), the particulate number (PN) is reduced and NOx increases gradually. However, the variation of PN and NOx are not similar for waste cooking biodiesel (WCBD) and butanol blend, even though their oxygen content are the same in the blends. This is due to the source of the biofuel and their internal chemistry.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
An analytical solution is presented for the laminar swirling flow in a tube. Attention is given to a particular type of swirling flow corresponding to a zero longitudinal acceleration parameter, with large suction at the surface. The investigation shows that in the case of very large rates of suction the velocity overshoot can be almost eliminated. This is even possible in flows with swirls which are characterized by a velocity overshoot in the longitudinal direction.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
The study deals with the breakup behavior of swirling liquid sheets discharging from gas-centered swirl coaxial atomizers with attention focused toward the understanding of the role of central gas jet on the liquid sheet breakup. Cold flow experiments on the liquid sheet breakup were carried out by employing custom fabricated gas-centered swirl coaxial atomizers using water and air as experimental fluids. Photographic techniques were employed to capture the flow behavior of liquid sheets at different flow conditions. Quantitative variation on the breakup length of the liquid sheet and spray width were obtained from the measurements deduced from the images of liquid sheets. The sheet breakup process is significantly influenced by the central air jet. It is observed that low inertia liquid sheets are more vulnerable to the presence of the central air jet and develop shorter breakup lengths at smaller values of the air jet Reynolds number Re-g. High inertia liquid sheets ignore the presence of the central air jet at smaller values of Re-g and eventually develop shorter breakup lengths at higher values of Re-g. The experimental evidences suggest that the central air jet causes corrugations on the liquid sheet surface, which may be promoting the production of thick liquid ligaments from the sheet surface. The level of surface corrugations on the liquid sheet increases with increasing Re-g. Qualitative analysis of experimental observations reveals that the entrainment process of air established between the inner surface of the liquid sheet and the central air jet is the primary trigger for the sheet breakup.
Resumo:
This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.
Resumo:
In this paper, a different type of cross flow dielectric barrier discharge (DBD) reactor was designed and tested. Here the gas flow is perpendicular to the barrier discharge electrode. Discharge plasma was utilized to oxidize NO contained in the exhaust gas to NO2 and subsequent NO2 removal can be improved using an adsorbent system. A detailed study of DeNO(X) in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/adsorbent processes. Activated alumina (Al2O3) and MS-13x were used as adsorbents at room temperature. The main emphasis is laid on the removal of NOX from the filtered diesel engine exhaust. In filtered exhaust environment, the cross flow reactor along with adsorbent exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at various gas flow rates, ranging from 2 l/min to 25 l/min. The discharge plasma-adsorbent assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.
Resumo:
Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, but in addition, some soil types may have indigenous bacteria that are naturally suitable for degradation. The objectives for this work were (1) to find a feasible and economical technique to remediate oil spilled into Baltic Sea water and (2) to bioremediate soil contaminated by diesel oil. Moreover, the aim was (3) to study the potential for natural attenuation and the indigenous bacteria in soil, and possible adaptation to degrade diesel hydrocarbons. In the aquatic environment, the study concentrated on diesel oil sorption to cotton grass fiber, a natural by-product of peat harvesting. The impact of diesel pollution was followed in bacteria, phytoplankton and mussels. In a terrestrial environment, the focus was to compare the methods of enhanced biodegradation (biostimulation and bioaugmentation), and to study natural attenuation of oil hydrocarbons in different soil types and the effect that a history of previous contamination may have on the bioremediation potential. (1) In the aquatic environment, rapid removal of diesel oil was significant for survival of tested species and thereby diversity maintained. Cotton grass not only absorbed the diesel but also benefited the bacterial growth by providing a large colonizable surface area and hence oil-microbe contact area. Therefore use of this method would enhance bioremediation of diesel spills. (2) Biostimulation enhances bioremediation, and (3) indigenous diesel-degrading bacteria are present in boreal environments, so microbial inocula are not always needed. In the terrestrial environment experiments, the combination of aeration and addition of slowly released nitrogen advanced the oil hydrocarbon degradation. Previous contamination of soil gives the bacterial community the potential for rapid adaptation and efficient degradation of the same type of contaminant. When the freshly contaminated site needs addition of diesel degraders, previously contaminated and remediated soil could be used as a bacterial inoculum. Another choice of inoculum could be conifer forest soil, which provides a plentiful population of degraders, and based on the present results, could be considered as a safe non-polluted inoculum. According to the findings in this thesis, bioremediation (microbial degradation) and monitored natural attenuation (microbial, physical and chemical degradation) are both suitable techniques for remediation of diesel-contaminated sites in Finland.
Resumo:
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.
Resumo:
Converging swirling liquid jets from pressure swirl atomizers injected into atmospheric air are studied experimentally using still and cine photographic techniques in the context of liquid-liquid coaxial swirl atomizers used in liquid rocket engines. The jet exhibits several interesting flow features in contrast to the nonswirling liquid jets (annular liquid jets) studied in the literature. The swirl motion creates multiple converging sections in the jet, which gradually collapse one after the other due to the liquid sheet breakup with increasing Weber number (We). This is clearly related to the air inside the converging jet which exhibits a peculiar variation of the pressure difference across the liquid sheet, DeltaP, with We. The variation shows a decreasing trend of DeltaP with We in an overall sense, but exhibits local maxima and minima at specific flow conditions. The number of maxima or minima observed in the curve depends on the number of converging sections seen in the jet at the lowest We. An interesting feature of this variation is that it delineates the regions of prominent jet flow features like the oscillating jet region, nonoscillating jet region, number of converging sections, and so on. Numerical predictions of the jet characteristics are obtained by modifying an existing nonswirling liquid jet model by including the swirling motion. The comparison between the experimental and numerical measurements shows that the pressure difference across the liquid sheet is important for the jet behavior and cannot be neglected in any theoretical analysis. (C) 2002 American Institute of Physics.
Resumo:
The discharge plasma-chemical hybrid process for NOinfinity removal from the flue gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by ac or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads; is used to approximately simulate the flue gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO2, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO2 will be totally converted to N-2 and Na-2 SO4 using Na-2 SO3. The ac packed-bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (similar to 100 ppm). When the engine load exceeds 50% (NO > 300 ppm) there was not much decrease in NO reduction and more or less all the reactors performed equally. The total operating cost of the plasma-chemical hybrid system becomes $4010/ton of NO, which is 1/3-1/5 of the conventional selective catalytic process.
Resumo:
Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet.