384 resultados para Shrubs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

干旱胁迫是全球范围内影响植物生存、生长和分布的重要环境因子。岷江上游干旱河谷区,由于生态环境的脆弱性和长期人类活动的干扰和过度利用,导致植被严重退化,水土流失加剧,山地灾害频繁,干旱化和荒漠化趋势明显。这种趋势若不能遏制,将严重阻碍区域社会经济的快速协调发展,并且威胁成都平原地区的发展和长江中下游地区的生态安全。因而开展干旱河谷生态恢复研究成为解决这些问题的关键。水分匮乏是限制干旱河谷生态恢复的关键因子,在全球气候变化的背景下,干旱胁迫在区域尺度上可能会更加严重,并使干旱河谷的生态环境更加恶化。因此,深入研究干旱河谷乡土植物对干旱胁迫的响应和适应机理,具有非常重要的理论和实践意义。 本论文以岷江上游干旱河谷的三种乡土豆科灌木,白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha)理论和实践意义。为研究对象,在人工控制条件下设计了4-5个连续性干旱胁迫处理,系统地研究了灌木幼苗的生长、生物量积累和水分利用效率(WUE)、形态结构和生理过程等对干旱胁迫的反应,揭示了幼苗的干旱适应能力及种间差异。主要研究结论如下: 1) 灌木生长和繁殖对干旱胁迫的反应 在干旱胁迫下,幼苗生长速率显著减小,叶片衰老和脱落比率增大,这些变化随着胁迫强度的增加具有累积效应。叶片比茎对干旱胁迫的反应更敏感。在严重干旱胁迫下,幼苗的有性繁殖被限制,但在中等程度干旱胁迫下,幼苗的有性繁殖能力被提高。 2) 灌木生物量积累及其分配和WUE对干旱胁迫的反应 在干旱胁迫下,灌木各器官的生物量都显著减小,但是生物量的分配侧重于地下部分,使得根茎比在干旱条件下增大。幼苗的耗水量(WU)随着干旱胁迫的增加而显著减少。白刺花和小马鞍羊蹄甲WUE在干旱胁迫下降低;小雀花的WUE在中等干旱胁迫下升高。 3) 灌木叶片结构特征对干旱胁迫反应 白刺花叶片具有较为典型的旱生型结构,而小马鞍羊蹄甲和小雀花则为中生型结构。在1至2年的干旱胁迫下,灌木叶片结构组成未发生本质性的改变,主要是细胞大小的变化。在中等和严重干旱胁迫下,叶肉组织厚度明显减小;并且气孔和表皮细胞面积也显著减小,气孔和表皮细胞密度显著增大;叶肉细胞层数、P/S值、表皮厚度等无显著变化。 4) 灌木对干旱胁迫的生理响应 气体交换参数和叶片相对含水量(RWC)在中等干旱胁迫下发生了明显的改变,而叶绿素荧光参数和光合色素含量在严重干旱胁迫下才发生显著变化。在干旱胁迫下,净光合作用速率(Pn)、气孔导度(gs)和RWC呈下降趋势,而叶片温度(Tl)呈增加趋势,蒸腾速率(Tr)的变化不明显。除了日最大Pn减小以外,干旱胁迫对气体交换参数的日变化无显著影响,但是对光合-光响应曲线有显著的影响,使有效光合时间缩短。在严重干旱胁迫下光系统受到损害而代谢减弱,PSⅡ中心的内禀光能转换效率(Fv/Fm)、量子产量(Yield)、光化学淬灭参数(qP)显著降低,而非光化学淬灭参数(NPQ)明显增加。气孔限制和非气孔限制对Pn的影响与干旱胁迫强度有关。在中度胁迫下,气孔限制起主导作用,在严重胁迫下非气孔限制起主导作用,40% FC水分条件可能是灌木由气孔限制向非气孔限制的转折点。 5) 灌木对干旱胁迫的适应能力及其种间差异 三种灌木对干旱胁迫具有较好的适应能力,即使在20% FC,幼苗未因干旱胁迫III而死亡;80% FC适宜于幼苗生长。白刺花生长速率慢,耗水量较少,具有较强的耐旱和耐贫瘠能力,并具有干旱忍受机制,能够在较干旱的环境中定居和生长。小马鞍羊蹄甲和小雀花,生长快,水分消耗量较大,尤其是小雀花,对干旱胁迫的忍受能力较弱,具有干旱回避机制,因而适宜于在较为湿润的生境中生长。综合分析表明,生长速率较慢的物种抗旱能力较强,其更适宜于作为干旱地区植被恢复物种。 Drought is often a key factor limiting plant establishment, growth and distribution inmany regions of the world. The harsh environmental conditions and long-termanthropogenic disturbance had resulted in habitat destruction in the dry valley ofMinjiang river, southwest China. Recently, it tended to be more severe on the vegetationdegradation, soil erosion and water loss, natural disaster, as well as desertification, whichimpact on regional booming economy and harmonious development, and would be verydangerous to the environmental security in the middle and lower reaches of Yangzi River.Therefore, ecological restoration in the dry valley is one of the vital tasks in China. Waterdeficit is known to affect adversely vegetation restoration in this place. Moreover, in thecontext of climate change, an increased frequency of drought stress might occur at aregional scale in the dry valleys of Minjiang River. The selection of appropriate plantingspecies for vegetation restoration in regard to regional conditions is an important issue atpresent and in further. The research on responses of indigenous species to drought stresscould provide insights into the improvement of the vegetation restoration in the dry valleys of Minjiang River. In this paper, the responses of three indigenous leguminous shrubs, Sophora davidii,Bauhinia faberi var. microphylla and Campylotropics polyantha, to various soil watersupplies were studied in order to assess drought tolerance of seedlings, and to compare interspecific differences in seedlings’ responses to drought stress. The results were as follows: 1 Growth and reproduction of shrubs in response to drought stress Seedling growth reduced significantly while leaf senescence accelerated underdrought stress, the cumulative responses to prolonged drought were found. The capacityfor reproduction was limited by severe drought stress, and improved by moderate droughtstress. Leaf responses were more sensitive than shoot to various water supplies. 2 WUE, biomass production and its partitioning of shrubs in response to drought stress Drought stress reduced significantly the total dry mass and their components ofseedlings, and altered more biomass allocation to root system, showing higher R/S ratiounder drought. Water use (WU) and water-use efficiency (WUE) of both S. davidii and B.faberi var. microphylla declined strongly with drought stress. The WU C. polyantha ofalso declined with drought stress, but WUE improved under moderate drought stress. 3 Anatomical characteristics and ultrastructures of leaves in response to drought stress There were xeromorphic for S. davidii leaves and mesomorphic for B. faberi var.microphylla and C. polyantha at the all water supplies. The foundational changes in leafstructures were not found with drought stress. However, mesophyll thickness, the areas ofstomatal and epidermis reduced slightly while the densities of stomatal and epidermisincreased under severe drought stress. Variations in these parameters could mainly be duoto cell size. Other structures did not displayed significant changes with drought stress. 4 Physiological responses of shrubs to drought stress The gas exchange parameters and leaf relative water content (RWC) were affectedby moderate stress, while chlorophyll fluorescence and chlorophyll content were onlyaffected by severe stress. Drought stress decreased net photosynthesis rate (Pn), stomatalconductance, light-use efficiency and RWC, and increased leaf temperature. Therespiration rates (Tr) were kept within a narrower range than Pn, resulting in aprogressively increased instantaneous water use effiecency (WUEi) under drought stress.Moreover, drought stress also affected the response curve of Pn to RAR, there was adepression light saturation point (Lsat) and maximum Pn (Pnmax) for moderate andsevere stressed seedling. However, diurnal changes of gas exchange parameters did notdiffer among water supplies although maximum daily Pn declined under severe stress.VISevere stress reduced Fv/Fm, Yield and qP while increased NPQ and chlorophyll content.Photosynthetic activity decreased during drought stress period due to stomatal andnon-stomatal limitations. The relative contribution of these limitations was associatedwith the severity of stress. The limitation to Pn was caused mainly by stomatal limitationunder moderate drought stress, and by the predominance of non-stomatal limitation undersevere stress. In this case, 40% FC water supply may be a non-stomatal limitation 5 Interspecific differences in drought tolerance of shrubs Three shrubs exhibited good performance throughout the experiment process, evenif at 20% FC treatment there were no any seedlings died, 80% FC water supply wassuitable for their establishment and growth. S. davidii minimized their water loss byreducing total leaf area and growth rate, as well as maintained higher RWC and Pncompared to the other two species under drought stress, thus they might be more tolerantto the drought stress than the other two species. On the contrary, it was found that C.polyantha and B. faberi var. microphylla had higher water loss because of their stomatalconductance and higher leaf area ratios. They reduced water loss with shedding theirleaves and changing leaf orientation under drought stress. Based on their responses, thestudied species could be categorized into two: (1) S. davidii with a tolerance mechanismin response to drought stress; (2) C. polyantha and B. faberi var. microphylla withdrought avoidance mechanism. These results indicated that slow-growing shrub speciesare better adapted to drought stress than intermediate or fast-growing species in present orpredicted drought conditions. Therefore, selecting rapid-growing species might leavethese seedlings relatively at a risk of extreme drought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

近十年,植物群体遗传学的研究飞速发展,然而与海拔相关的植物群体遗传结构和遗传变异研究却相对较少。到目前为止,还不清楚遗传变异与海拔之间是否有一个通用的格局。在山区,各种生态因子,如温度、降水、降雪、紫外线辐射强度以及土壤成分都随海拔梯度急剧变化,造成了即使在一个小的空间区域,植被类型变化显著,这种高山环境的异质性和复杂性为我们研究植物群体遗传结构和分化提供了方便。沙棘(Hippophea)属于胡颓子科(Elaeagnaceae)为多年生落叶灌木或乔木,雌雄异株,天然种群分布极为广泛。中国沙棘(H. rhamnoides subsp. sinensis)是沙棘属植物中分布较广的一个亚种,种内形态变异非常丰富,加之其具有独特的繁育系统和广泛的生态地理分布,是研究沙棘属植物遗传变异和系统分化的理想材料。本文从1,800 m 到3,400 m 分5 个海拔梯度进行取样,用RAPD 和cpSSR 分子标记研究了卧龙自然保护区中国沙棘天然群体的遗传结构和遗传变异。5 个取样群体依次标记为A、B、C、D 和E,它们分别代表分布在海拔1,800,2,200,2,600,3,000 和3,400 m 的5 个天然群体。RAPD实验用11 条寡核苷酸引物,扩增得到151 个重复性好的位点,其中143 个多态位点,多态率达94.7%。在5 个沙棘群体中,总遗传多样性值(HT)为0.289,B群体内的遗传多样性值为0.315,这完全符合沙棘这种多年生、远交的木本植物具有高遗传变异的特性。5 个群体内遗传多样性随海拔升高呈低-高-低变异趋势,在2,200 m海拔处的B群体遗传多样性达最大值0.315,3,400 m海拔处的E群体则表现最小仅0.098。5 个群体间的遗传分化值GST=0.406,也即是说有40.6%的遗传变异存在于群体间,1,800 m海拔处的A群体与其它群体的明显分离是造成群体间遗传分化大的原因。UPGMA聚类图和PCoA散点图进一步确证了5 个群体间的关系和所有个体间的关系。最后,经过Mantel检测,遗传距离与海拔表现了明显的相关性(r = 0.646, P = 0.011)。cpSSR 实验中,经过对24 对cpSSR 通用引物筛选,11 对引物能扩增出特异性条带,只有2 对引物(ccmp2 和ARCP4)呈现多态性。4 个等位基因共组合出4 种单倍型,单倍型Ⅰ出现在A 群体的所有个体和B 群体的8 个个体中,C、D、E 三个群体均不含有,而单倍型Ⅱ出现在C、D、E 三个群体的所有个体及B 群体的18 个个体中,A 群体不含有。另外两种单倍型Ⅲ和Ⅳ为稀有类型,仅B 群体中的4 个个体拥有。这种单倍型分布模式和TFPGA 群体聚类图揭示了,C、D、E 群体可能来源于同一祖先种,而A 群体却是由另一祖先种发展起来的,B 群体则兼具了这两种起源种的信息,这可能是因为在历史上的某一时期,在中国沙棘群体高山分化的过程中,B 群体处某个或者某些个体发生了基因突变,具备了适应高海拔环境的能力,产生了高海拔沙棘群体的祖先种。 In recent ten years, studies about population genetics of plants developed rapidly,whereas their genetic structure and genetic variation along altitudinal gradients have beenstudied relatively little. So far, it is uncleared whether there is a common pattern betweengenetic variation and altitudinal gradients. In the mountain environments, importantecological factors, e.g., temperature, rainfall, snowfall, ultraviolet radiation and soil substratesetc., change rapidly with altitudes, which cause the vegetation distribution varying typically,even on a small spatial scale. The mountain environments, which are heterogeneous andcomplex, facilitate and offer a good opportunity to characterize population genetic structureand population differentiation.The species of the genus Hippophae L. (Elaeagnaceae) are perennial deciduous shrubs ortrees, which are dioecious, wind-pollinated pioneer plants. The natural genus has a widedistribution extending from Northern Europe through Central Europe and Central Asia toChina. According to the latest taxonomy, the genus Hippophae is divided into six species and12 subspecies. The subspecies H. rhamnoides ssp. sinensis shows significant morphologicalvariations, large geographic range and dominantly outcrossing mating system. Thesecharacteristics of the subspecies are favourable to elucidate genetic variation and systemevolution. To estimate genetic variation and genetic structure of H. rhamnoides ssp. sinensisat different altitudes, we surveyed five natural populations in the Wolong Natural Reserve at altitudes ranging from 1,800 to 3,400 m above sea level (a.s.l.) using random amplifiedpolymorphic DNA markers (RAPDs) and cpSSR molecular methods. The five populations A,B, C, D, and E correspond to the altitudes 1,800, 2,200, 2,600, 3,000 and 3,400 m,respectively.Based on 11 decamer primers, a total of 151 reproducible DNA loci were yielded, ofwhich 143 were polymorphic and the percentage of polymorphic loci equaled 94.7%. Amongthe five populations investigated, the total gene diversity (HT) and gene diversity within population B equaled 0.289 and 0.315, respectively, which are modest for a subspecies of H.rhamnoides, which is an outcrossing, long-lived, woody plant. The amount of geneticvariation within populations varied from 0.098 within population E (3,400 m a.s.l.) to 0.315within population B (2,200 m a.s.l.). The coefficient of gene differentiation (GST) amongpopulations equaled 0.406 and revealed that 40.6% of the genetic variance existed amongpopulations and 59.4% within populations. The population A (1,800 m a.s.l.) differed greatlyfrom the other four populations, which contributes to high genetic differentiation. A UPGMAcluster analysis and principal coordinate analyses based on Nei's genetic distances furthercorroborated the relationships among the five populations and all the sampling individuals,respectively. Mantel tests detected a significant correlation between genetic distances andaltitudinal gradients (r = 0.646, P = 0.011).Eleven of the original 24 cpSSR primer pairs tested produced good PCR products, onlytwo (ccmp2 and ARCP4) of which were polymorphic. Four total length variants (alleles) werecombined resulting in 4 haplotypes. The haplotype was present in all individuals of Ⅰpopulation A and 8 individuals of populations B, the other three populations (C, D and Epopulations) did not share. The haplotype was present in all individuals of populations C, D Ⅱand E and 18 individuals of populations B, population A did not share. The other twohaplotypes and were rare haplotypes, which were only shared in 4 individuals of Ⅲ Ⅳpopulation B. The distribution of haplotypes and TFPGA population clustering map showedthat the populations C, D and E might be origined from one ancestor seed and population Amight be from another, whereas population B owned information of the two ancestor seeds. Itwas because that gene mutation within some individual or seed in the location of population Bwas likely to happen in the history of H. rhamnoides, which was the original ancestor of thehigh-altitude populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

岷江上游干旱河谷区水土流失强烈,地质灾害频繁,生态环境十分脆弱,而土壤条件恶劣(水分不足和养分缺乏)是阻碍该区植被恢复的关键因子,因此研究水分和乡土灌木生长对土壤的影响对该区的生态恢复具有指导意义。本文通过定点模拟实验,选取三种优势豆科灌木为研究对象,分别是白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha),设置5 个水分梯度,分别为100%、80%、60%、40%和20%田间持水量(FC),对栽种植物与不种植物下土壤理化性质和酶活性进行测定分析,系统比较和研究了不同水分条件和不同乡土灌木生长对干旱河谷区土壤结构、养分循环、酶活性以及微生物量的影响。主要结果如下:1. 无论生长植物与否,土壤的毛管持水量和毛管孔隙度都随着水分含量的减少而降低,最大持水量、总孔隙度和容重变化不大,相应地,土壤中的非毛管孔隙随含水量的减少而升高。各水分条件下,种植植物的毛管持水量和毛管孔隙度低于无植物生长的土壤,非毛管孔隙度相应地高于无植物土壤。土壤含水量在100%-40% FC 时,三种豆科灌木的毛管持水量和毛管孔隙度存在差异,而20% FC 条件下,三种豆科灌木土壤的物理性质基本相同。2. 水分胁迫影响土壤中养分的矿化和积累,主要表现在降低了水溶性碳和铵态氮的含量,中等程度胁迫时(60% FC)促进了有机碳和硝态氮的富集,对速效钾和有效磷没有明显作用。种植豆科灌木后各水分梯度上都增加了有机碳、铵态氮、速效钾和有效磷的积累。增加程度上三种豆科灌木间有一定差异,对于土壤有机碳总量,种植白刺花和小马鞍羊蹄甲明显高于小雀花,同样的情况还出现在铵态氮和速效钾上,但是对于有效磷,种植小雀花后的增加程度则明显高于白刺花和小马鞍羊蹄甲。种植豆科灌木不仅增加了土壤养分的相对含量,也改变了其在水分梯度上的变化趋势及其变化幅度,这种作用主要体现在碳元素和氮元素上。3. 无植物生长时脲酶活性随水分含量的减少而升高,水分胁迫对磷酸酶和过氧化氢酶的作用不显著,蔗糖酶也保持在相对较高的水平。种植植物后,蔗糖酶、磷酸酶活性与无植物时相比有较大幅度的提高,种植白刺花的脲酶活性也升高,其升高的程度在不同水分含量时不同。种植植物还降低了酶活性在水分梯度上的变幅,使之在水分梯度间的差异显著性降低。脲酶活性在指示土壤性质改变方面是较敏感的指标,其它三种酶在不同植物间的差异不明显。4. 在无植物生长时,中等程度的水分胁迫(60% FC)提高了土壤微生物量碳含量,过高或过低的土壤水分均不利于微生物碳的积累。种植小马鞍羊蹄甲后微生物量碳在水分梯度上的变化趋势与无植物生长时一致,而种植白刺花和小雀花后微生物量碳随着水分含量的减少而降低。不同种类植物的微生物量碳在水分梯度上的变化特征也不同,100% FC 条件下三种植物间没有差异,80%和60% FC 条件下小马鞍羊蹄甲显著高于白刺花和小雀花,40%和20% FC 条件下白刺花和小马鞍羊蹄甲也显著高于小雀花,说明不同种类植物随着干旱胁迫程度的加深微生物量碳的降低幅度不同,在极度干旱时,白刺花和小马鞍羊蹄甲土壤依然保持了较高的微生物活性,而小雀花土壤微生物量则明显下降。The dry valley of the upper reaches of the Minjiang River is seriously degradedmountain ecosystem. It was endangered by extremely soil lost and frequentlygeological disaster. Previous studies showed that short of water and nutrients in soilwas the principal limiting factors of vegetation restoration in this area. The typical soiland three dominant leguminous shrubs Sophora davidii, Bauhinia faberi var.microphylla and Campylotropics polyantha in upper reaches of arid Minjiang Rivervalley were considered as experimental material. Two-month old seedlings of eachspecies were exposed to five water supplies (100%, 80%, 60%, 40% and 20% waterfield capacity (FC)) in a temperature and light-controlled greenhouse. Afterthree-month water treatment, soil physiochemical variables and soil microbialactivities were determined by conventional methods. The main results showed that:1. Soil capillary capacity and capillary porosity decreased along water supplyregimes in all treatments, while saturated water capacity, total porosity and bulkdensity kept in a relatively stable level, as a result, the non-capillary porosity andcapacity increased with decrease of water supply. Compared to non-planted soil, theplant-soil systems had a higher non-capillary porosity and capacity, suggestingappropriate oxygen was present in soil to maintain the living of microorganism. Soilof three type shrub species shared the same capillary capacity and capillary porosityunder 20% FC.2. Water soluble carbon and NH4+-N decreased in response to water stress, whiletotal organic carbon and NO3--N promoted by moderate water stress and inhibited by 100% and 20% FC. Total organic carbon, NH4+-N, rapidly available K and availableP increased after the planting of leguminous shrubs in five water supply regimescompared to non-planted soil. For TOC, NH4+-N and rapidly available K, thepromotion effect was higher in S. davidii and B. faberi var. microphylla than C.polyantha planted soil, while available P displayed the opposite side. The planting ofshrubs also reduced the variance of observed traits along water supply gradients.3. Drought stress increased urease activity in non-planted soil, while insignificantdifferences were observed in phosphatase and catalase activity among five watersupply regimes. The planting of leguminous shrubs facilitated the β-glucosidase andphosphatase activity compared to the non-planted soil. It also reduced the variance ofenzyme activity along water supply gradients. Urease was more sensitive to waterstress than other three enzymes.4. Soil water content significantly affected microbial biomass carbon andCmic:Corg. S. davidii and B. faberi var. microphylla showed more drought toleranceability than C. polyantha, attributing not only to their relatively smaller variance ofmicrobial biomass carbon along soil water supply gradients, but also to the highlevel of microbial activity under severe water stress. S. davidii and B. faberi var.microphylla benefited reproduction of soil microorganism at 60%-80% FC, whilesevere drought limited it due to the competition of water and nutrients between plantand soil microorganism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物群落及其环境在干扰后的演替格局和过程的研究,是群落和生态系统动态研究的一个热点。选取青藏高原东缘山原区川西云杉林皆伐后,从草地过渡到灌丛的关键阶段的4 个皆伐迹地(恢复时间为8 a、10 a、16 a 和21 a),研究皆伐及自然恢复过程对林下典型灌木银露梅(Potentilla glabra)和唐古特忍冬(Lonicera tangutica)的生长与繁殖能力的影响以及灌木植物在迹地上的更新情况,分析灌木在不同生境中的适应对策和适应能力的差异,为揭示青藏高原东缘山原区迹地植被从草甸到灌丛演替的过程和特点及促进迹地演替与植被恢复进程提供理论依据和技术支撑。研究主要结论如下:1)皆伐后银露梅生长和繁殖能力显著提高,但对唐古特忍冬的影响不明显。皆伐后银露梅丛基径、高度和各部分生物量都显著增加(P < 0.05),但唐古特忍冬只有叶生物量和地下生物量增加,总生物量和其余构件生物量无显著变化。皆伐后,银露梅的结实数量、结实株数、不结实株数和结实株/不结实株比例显著增加(P < 0.05)。自然恢复过程中,银露梅和唐古特忍冬生长能力以及银露梅的结实量都表现出降低的趋势。随着迹地自然恢复时间的增加,银露梅和唐古特忍冬的基径、高度、丛叶片数和各部分生物量有减少的趋势。银露梅的结实株数增加, 但结实数量减少。2)皆伐对银露梅和唐古特忍冬生物量分配模式影响不一致。原始林和迹地中(除CT85)银露梅的生物量大小关系皆为:地下>茎>侧枝>叶。唐古特忍冬在原始林中的生物量大小关系为:茎>地下部分>侧枝>叶,而皆伐后生物量的分配情况改变,生物量大小关系变为:地下部分>茎>侧枝>叶。随着自然恢复时间的增加,银露梅减少了地下生物量的分配,而唐古特忍冬增加了地下生物量的分配。3)皆伐和恢复时间的增加改变了迹地物种组成,促使阳性乔、灌木在迹地上定居。4 个迹地上共出现了灌木15 种,乔木3 种,没有出现天然云杉和冷杉幼苗。随着恢复时间的增加,迹地上的灌木物种由原始林下的耐阴物种逐步发展为以针刺悬钩子(Rubus pungens)为主的阳性灌木。4)影响灌木幼苗密度和幼树密度的因子不一致。灌木幼苗密度与灌木层盖度显著负相关,与苔藓层盖度显著正相关。幼树密度与草本层盖度正相关,与苔藓层盖度、灌木层盖度和高度负相关。5)研究发现在青藏高原东缘山原区皆伐15~20 a 后,迹地仍以草本植物为主,推测皆伐后至少20 a 以上迹地才可能向灌丛阶段过渡,比高山峡谷地区的演替进程至少推迟了20 a。银露梅和唐古特忍冬在皆伐后自然恢复过程中表现出不同的生长与繁殖策略是由两个物种的生物学特性的差异引起的。银露梅比唐古特忍冬更适应迹地退化环境。促进青藏高原东缘山原林区迹地森林恢复一方面是尽量减少人为活动的破坏,另一方面,可以通过在迹地中播种适当的乡土乔、灌木种子(如白桦、银露梅)等人工措施,以加快演替进程。The succession pattern and process of plant community and their environments is a hot spotin community and ecosystem dynamic study. Four clearcuts were chosen in Rangtang(recovery time of 8 a、10 a、16 a and 21 a), which represented the key stage of thecommunity evolved from grass stage to shrub stage in the eastern margin of theQinghai-Tibetan Plateau. The growth and reproduction of the Potentilla glabra andLonicera tangutica and the natural regeneration of shrub plants in the primary Piceabalfouriana forest and 4 clearcuts were studied to explore how clear cutting andnatural recovery process affected the understory shrub species during the 21 years inthe eastern margin of the Qinghai-Tibetan Plateau. The main results were below.1) The growth and reproduction of P. glabra significantly increased after forestclear cutting.. But it was not so significant as to the L. tangutica. The organismbiomass and total biomass of P. glabra were increased obviously after clear cutting(P< 0.05). But only leaves and underground biomass of L. tangutica increasedsignificantly after clear cutting(P < 0.05). The number of fruit and growth of P. glabraincreased significantly after clear cutting too(P < 0.05). The ramet height, basaldiameter , organism biomass and friut number of P. glabra and L. tangutica reducedas the increase of recovery time.2) The biomass allocation patterns varied between P. glabra and L. tangutica inthe primary forest and clearcuts. The biomass allocation of P. glabra both in primary forest and clearcuts was followed as: underground part > stem > branch > leaves.However, the biomass allocation of L. tangutica had changed after the clear cutting.The biomass allocation of L. tangutica in the primary forest was followed as: stem >underground part > branch > leaves and it was underground part > stem > branch >leave in clearcuts. The biomass allocation of P. glabra and L. tangutica varied amongclearcuts. Aboveground biomass was increased while underground biomass decreasedfor P. glabra with the increase of recovery period. However, the L. tangutica showedthe reverse changing pattern.3) Clear cutting and recovery time had changed the species composition of theclearcuts. There were 15.shruby species and 3 tree species in the four clearcuts. Nospruce and fir seedlings were found. In the early stage after clear cutting, there wereonly understory shrub species from the primary Picea balfouriana forest. The sunnyspecies, especieally Rubus pungens invaded intensly as the increase of recovery time.4) There was a significant negative relationship between density of seedlingswith shrub layer coverage and positive correlation with moss coverage. The saplingshad significantly positive correlation with herb layer coverage and negativecorrelation with moss coverage, shrub layer coverage and height.5)Comparing to studies in Miyalou, a nearby high mountain and canyon area,the secondary sucession in this subalpine plateau areas lagged at least 20 years.P. glabra and L. tangutica showed different growth and reproduction strategies toclear cutting and natural recovery , which may associated with the difference of theirbiological characters. P. glabra was more adaptive to the clear cutting than the L.tangutica. Two suggestions were probably recommended to promote the recoveryprogress in the subalpine plateau areas based on the results of this study. Limitanthropogenic disturbance, and meanwhile sow native tree and shrub seeds inclearcuts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根据在甘肃子午岭 ,安塞墩滩和延安燕儿沟的试验观测资料 ,研究了梢林区植被对降水的拦蓄和消耗情况 ;分析了农区基本农田上和退耕还林 (草 )坡地上作物和植物对降水的拦蓄和土壤水分季节动态 ;计算了本区主要农作物和几种有代表性的乔、灌、草植物的全生育期内需水量和降水资源补给的盈亏状况 ;并提出了几种利用降水资源和河川径流的模式

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用长期定位试验资料,研究了黄土高原丘陵沟壑区乔木和灌木植物系数的计算方法,比较了两种代表性乔木(榆树和小叶杨)和两种代表性灌木(柠条和沙棘)的实际蒸散量和生育期土壤平均含水量的差异,分析了土壤含水量变化对植物根系吸水和土壤水分有效性的影响。结果发现:该地区灌木的实际蒸散量小于乔木,但同类植物的实际蒸散量没有显著差异;土壤含水量柠条最高,沙棘最低;榆树植物系数最小,柠条其次,沙棘最大,但榆树和小叶杨的土壤水分有效性高,耗水量大,所以灌木较适于该区生长。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过对黄土丘陵沟壑区安塞纸坊沟沟沿线边缘植被特征的调查,共发现隶属26科的66个物种,其中豆科、禾本科和菊科物种分别占19.70%1、5.15%和13.64%;物种中出现最多的是多年生草本,其次依次是1年生草本、灌木、小灌木、乔木、藤本和小乔木,其中灌乔物种多为主要物种且多为当地优势灌木虎榛子和酸枣等,指示着研究区植被恢复的方向;调查植物种基本包含了陕北黄土高原森林草原带次生演替各个阶段的主要植物种,是研究区次生演替的一个缩影;从沟沿线边缘植被的分布看,灌木远多于草本,其中以灌木为主的沟沿线区段植被的宽度、盖度均比以草本为主的沟沿线区段大,沟沿线防蚀效益较好。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qianyanzhou(QYZ) Ecological Station established in 1983 with an area of 204 hm~2 is affiliated to the Chinese Ecosystem Research Network.Before 1982,herbs had been dominant,sparsely dotted with shrubs.After 20-year restoration of the vegetation,the vegetation showed significant changes in both forest coverage and species diversity.Forest coverage had increased to 93.3% in 1999 from 0.4% in 1982.The vegetation could be broadly classified into two groups: artificial forest,accounting for the most percent,and natural secondary forest.These two groups could be subdivided into 12 types.Based on the 2003 field work,The authors studied plant community composition and vertical structure.The results were as follows: 1) On the study plots were there about 150 species,of which 100,49,and 47 grew in arbor layer and shrub layer and herb layer,respectively.Of 12 community types,the amount of species in shrub layer was larger than that of other two layers.As to the species richness in the different community types,Liquidambar formosana community showed the highest and Imperata cylindrical var.major community the least.The amount of species in arbor layer of artificial forest was smaller than those of natural Pinus massoniana forest,but no difference in understory.2) Loropetalum chinense,Quercus fabric and Vaccinium bracteatum were dominant shrub species with a wide distribution.Three ferns Woodwardia japonica、Dryopteris atrata and Dicrannepteris dichotoma were dominant herb species.Lianas were sparse,but Milletlia reticulata were found in all forest types.3) Up to now some natural regeneration species,such as Eurya muricata、Quercus fabri、Vaccinium bracteatum、Rhus chinensis、Adinandra bockiana,had grown in the arbor layer of artificial forests.Some herb species,such as Arundinella setosa、Miscanthus floridulus、Isachne globosa、Scirpus triqueter,which were dominant ones in the herb layer before the restoration of vegetation,disappeared now.4) The vertical structure of natural Pinus massoniana community and Liquidambar formosana community showed more complex comparing with artificial forests.For the artificial forests,the conifer and broad-leaves mixed forest had a more complex structure.In both natural Pinus(massoniana) community and Liquidambar formosana community,it was dominated by individuals with height of 3~4 m,while 10~12 m in the artificial forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrous oxide (N2O) emission was measured in a Kobresia humilis meadow and a Potentilla fruticosa meadow in the Qinghai-Tibet Plateau from June 2003 to July 2006. Five treatments were setup in the two alpine meadows. Two bare soil treatments were setup in the K. humilis meadow (BSK) and in the P. fruticosa meadow (BSP) by removing the above- and belowground plant biomass. Three plant community treatments were setup with one in the K. humilis meadow (herbaceous community in the K. humilis meadow-HCK) and two in the P. fruticosa meadow (herbaceous community in the P. fruticosa meadow-HCP, and shrub community in the P. fruticosa meadow-SCP). Nitrous oxide emission from BSP was estimated to be 38.1 +/- 3.6 mu g m(-2) h(-1), significantly higher than from BSK (30.2 +/- 2.8 mu g m(-2) h(-1)) during the whole experiment period. Rates from the two herbaceous blocks (HCK and HCP) were close to 39.5 mu g m(-2) stop h(-1) during the whole experimental period whereas shrub community (SCP) showed significant high emission rates of N2O. Annual rate of N2O emission was estimated to be 356.7 +/- 8.3 and 295.0 +/- 11.6 mg m(-2) year(-1) from the alpine P. fruticosa meadow and from the alpine K. humilis meadow, respectively. These results suggest that alpine meadows in the Qinghai-Tibetan Plateau are an important source of N2O, contributing an average of 0.3 Tg N2O year(-1). We concluded that N2O emission will decrease, due to a predicted vegetation shift from shrubs to grasses imposed by overgrazing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated experimental warming and simulated grazing ( clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer- grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity ( ANPP) by 40 g . m(-2) . yr(-1) at the meadow habitats and decreased palatable ANPP ( total ANPP minus non- palatable forb ANPP) by 10 g . m(-2) . yr(-1) at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non- palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland habitats, warming resulted in less digestible shrubs, whose foliage contains 25% digestible dry matter ( DDM), replacing more digestible graminoids, whose foliage contains 60% DDM. This shift from graminoids to shrubs not only results in lower- quality forage, but could also have important consequences for future domestic herd composition. Although warming extended the growing season in non- clipped plots, the reduced rangeland quality due to decreased vegetative production and nutritive quality will likely overwhelm the improved rangeland quality associated with an extended growing season.Grazing maintained or improved rangeland quality by increasing total ANPP by 20 - 40 g . m(-2) . yr(-1) with no effect on palatable ANPP. Grazing effects on forage nutritive quality, as measured by foliar nitrogen and carbon content and by shifts in plant group ANPP, resulted in improved forage quality. Grazing extended the growing season at both habitats, and it advanced the growing season at the meadows. Synergistic interactions between warming and grazing were present, such that grazing mediated the warming- induced declines in vegetation production and nutritive quality. Moreover, combined treatment effects were nonadditive, suggesting that we cannot predict the combined effect of global changes and human activities from single- factor studies.Our findings suggest that the rangelands on the Tibetan Plateau, and the pastoralists who depend on them, may be vulnerable to future climate changes. Grazing can mitigate the negative warming effects on rangeland quality. For example, grazing management may be an important tool to keep warming- induced shrub expansion in check. Moreover, flexible and opportunistic grazing management will be required in a warmer future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The largest mass extinction in the Phanerozoic happened at the end of the Permian. The microbialites formed in the extreme environments after the mass extinction has become a hotspot for geologists and paleontologists throughout the world. The dendroid microbialites that were described for the first time in 1999 from the Permian-Triassic boundary section at Laolongdong, Chongqing, have been studied by many geologists from China and overseas. Two important viewpoints about their origin have been proposed. Some researchers believed that they resemble Quaternary travertine shrubs in form, and may belong to microbialites. Some other researchers proposed that the dendroid structure is composed of clots formed by coccoidal cynaobacteria, and is microbialite. Our detailed survey on the section reveals that: (1) there is an interval of speckled “microbialite” in the section, and it underlies the dendroid “microbialite”, (2) the dendroid “microbialite” does not always have dendroid appearance; they are dendroid only in very local places; they are not dendroid in most places; for this reason, they are not comparable to recent tufa; (3) the volume of the dendroid structure greatly increases toward the top of the dendroid microbialite interval: accounting to 70% of the whole rock in the top part. This distribution pattern implies that the formation of this structure may be related to downward migration of the diagenetic fluid. Examination of thin sections reveals that the dendroid structure or point-like structure in the “microbialite” look as lighter areas in the thin sections and are composed of large blocky clear calcites containing scattered yellow dirty small calcite rhombi and irregular “points” of relict lime mudstone or wackestone or packstone. Their formation is by any one of the following two processes: (1) dissolution → filling of large blocky calcite; (2) dolomitization → dedolomitization → dissolution by meteoric fresh water → filling by large blocky calcites. It has been found that there are at least two sea-level falls during the P-T transition. As the sea level fall, the carbonate deposits came into supratidal environment, and suffered dolomitization caused by evaporative fluid or mixing water of sea water and meteoric water. Since the fluid migrated downward from the top of the deposits and in random pathway, the dolomitization formed dendroid or speckled dolomitic areas. As the deposits came into subaerial environments, the meteoric fresh water migrated along the dendroid or speckled dolomitic area with higher porosity, and dissolution happened, which caused the rock became spongy or alveolate. In later time, after the strata came into phreatic zone, large clear blocky calcites grew in and filled the pores in the spongy areas. The dendroid and speckled structure were formed in this way, rather than composed of clots formed by coccoid cyanobecteria. The microbial fossils in Laolongdong section include two types. The first is the tube-like cyanobecteria in middle Bed 3, which are generally less than 1 mm in length, taper toward one end, and are internally filled by microspars. They are straight or sinuous, with micritic wall 0.005~0.01 mm thick. Since this kind of microbial fossils are abundant in middle Bed 3, this rock belongs to microbialite. The second type occurs in Bed 5 and lower and middle Bed 6. They are irregular globular in shape, generally 0.2 ~ 0.5 mm in size, with several outward progresses, and internally filled by one layer of needle-like calcite cements on the wall and the large blocky calcite in the inner space. According to their shape and preservation way, it is inferred that this kind of fossils were formed from some kind of bacterial colony. The bacterial colony may be cuticle in composition, since it has some hardness as it is indicated by its resistance to deposit loading. These organisms discomposed during diagenetic time, and formed good porosity. In later diagenetic time, these pores were firstly cemented by needle-like calcites and later filled by large blocky calcites. So, the bacterial colony promoted the formation of dendroid and speckled structures. However, they did not always form such structures. On the other hand, even though no bacterial colony or other microbes or any kind of fossils were present, dendroid or speckled structures can form. Bed 4 of Laolongdong section contains abundant gastropods but no microbial fossils, and is not microbialite, even though it is speckled. The top of Bed 6 is dendroid, but contain no microbial fossils, and is not micrbialite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Asia continent, several significant environmental events happened during the Cenozoic era, such as uplift of the Tibet Plateau, formation of the Asian Monsoon system, aridification of the temperate inland region in Central Asia. To investigate the history of long-term palaeoclimate evolution during the late Cenozoic, a lacustrine sequence located at Sikouzi, Guyuan county, Ningxia-Hui Autonomous Region, was studied. The Sikouzi section is about 2880 m in thickness and has a general continuous nature according to field observation. Thus this thick lacustrine record is an important archive to further understand those environmental events. In this study, detailed field measurement, layer-after-layer description and sampling, and magnetostratigraphy and palynoflora investigations are conducted at the Sikouzi section and some preliminary results have been achieved as follows. Based on Hipparion fauna, pollen data and long distinctive patterns of the local magnetozones, the confident correlation of the Sikouzi magnetostratigraphic polarity to the GPTS (CK95) is best established, indicating that the top boundary of the Sikouzi formation is dated back to -19.8 Ma B.P. and consequently no Oligocene sediments deposited locally. On the other hand, both the field observation and the correlation to GPTS indicate a nearly continuous nature for the whole sequence. The palynological results show that the grassland has been a dominant vegetation in the Sikouzi area since ~19.8 Ma B.P, although some trees/shrubs were present sparsely during the intervals of relatively warm and wet climatic conditions. This implies that the onset of the aridification in northwestern China is dated back to at least 19.8 Ma B.P. ago. The Neogene Global Climatic Optimum (-16.0 Ma B.P.) occurring between the late Early Miocene and the early Middle Miocene is well documented in the Shanwang formation, Shandong Province. However, such event was not found in the Sikouzi record, and neither in the Guide and the Hualong basins, Qinghai province. This may lead us to the conclusion that the East-Asian Summer Monsoon system remained weak during the period of the Miocene Climatic Optimum although the onset of it was traced back to the Early Oligocene. In the Sikouzi area, it was warm between the latest Miocene and the early Pliocene and then became cool in the late Pliocene. This pattern is consistent with the palaeoclimate record of the Pliocene from other areas in the world.