923 resultados para Shear Bands
Resumo:
A área estudada está inserida no Domínio Transversal da Província Borborema. As unidades litoestratigráficas que compõem o embasamento paleoproterozócio (riaciano) são representadas por rochas ortoderivadas dos Complexos Salgadinho e Cabaceiras. Esses complexos foram individualizados de acordo com as suas diferenças composicionais, texturais e/ou geocronológicas. As rochas metassedimentares de idade paleoproterozóica (Orosiriano) foram interpretadas como constituintes do Complexo Sertânia. O magmatismo no estateriano é caracterizado por ortognaisses sienogranítcos da Suíte Carnoió-Caturité e por metanortositos do Complexo Metanortosítico Boqueirão. As unidades litoestratigráficas do Neoproterozóico são representadas por sucessões metassedimentares Criogenianas do Complexo Surubim e ortognaisses granodioríticos e sienograníticos do início do Ediacarano, denominados de Complexo Sumé e Ortognaisse Riacho de Santo Antônio, respectivamente. O magmatismo granítico do Ediacarano foi caracterizado pelo alojamento dos Plutons Inácio Pereira e Marinho. Os dados geocronológicos (U-Pb em zircão) obtidos indicam, no mínimo, o desenvolvimento de três eventos tectono-magmáticos. As idades de 2042 + 11Ma e 1996 + 13Ma obtidas nos ortoanfibolitos do Complexo Cabaceiras foram interpretadas como a idade de cristalização do protólito e metamorfismo, respectivamente. A idade de 1638 + 13Ma proveniente de hornblenda ortognaisse sienogranítico da Suíte Carnoió-Caturité foi interpretada como a idade de cristalização do protólito, marcando um evento magmático Estateriano de afinidade anorogênica. A idade de 550 + 3.1Ma encontrada em monzogranito porfirítico do Pluton Marinho é um registro do último evento magmático no final do Ediacarano, associado ao estágio tardio de desenvolvimento da Zona de Cisalhamento Coxixola. Os dados estruturais permitiram a individualização de três fases de deformação dúcteis, individualizadas como D1, D2 e D3. A fase D1 foi responsável pela geração de uma foliação S1, observada somente na charneira de dobras F2. O evento D2 é assinalado por uma tectônica contracional com transporte para NNW, observado a partir de bandas de cisalhamento assimétricas e dobras de arrasto em cortes paralelos a lineação de estiramento (L2x). Zonas de cisalhamento dúcteis de geometria e cinemática distintas desenvolveram-se durante a fase D3. As zonas de Cisalhamento Boa Vista, Carnoió e Congo estão orientadas na direção NE-SW e exibem cinemática sinistral em cortes paralelos à lineação de estiramento (L3x). As terminações meridionais dessas zonas de cisalhamento estão conectadas com a Zona de Cisalhamento Coxixola. Essa zona de cisalhamento, de direção WSW-ENE e cinemática destral, atravessa toda a área de estudo, com uma espessura média de rochas miloníticas de 300m. A Zona de Cisalhamento Inácio Pereira ocorre na porção leste da área de estudo, orientada na direção WNW-ESE. A análise geométrica e cinemática dessa zona de cisalhamento sugere uma evolução deformacional através de regime transpressivo oblíquo sinistral. O padrão anastomosado final resultante do desenvolvimento de todas as zonas de cisalhamento da área é relacionado à evolução estrutural de um sistema de zonas de cisalhamento dúcteis conjugadas.
Resumo:
In this paper, we report for the first time the spontaneous formation of Zr-based metallic glass nanofilms by developed dynamic forced-shear-rupture technique of hat-shaped specimens. The obtained nanofilms have about 100 nm thickness and other two geometrical dimensions can reach micrometer scales. Their glassy nature and structural stability were solidly identified. It was found that electrons with the wavelength of less than 0.165 Å could make the metallic glass nanofilms transparent. Furthermore, it is clearly shown that shearbanding instability still afflicts such 100-nm-thick metallic glass nanofilms.
Resumo:
Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
The Charpy impact fracture behavior of notched specimens of phenolphthalein poly(ether ketone) (PEK-C) has been studied over a range of temperature using a JJ-20 Model instrumented impact tester. For PEK-C, there exist two temperature regions which distinguish the fracture mechanism, and the brittle fracture was preferentially governed by slip or shear bands at relatively high temperatures, but by crazes at low temperatures. The temperature dependence of the ductility index (DI) shows similar peaks to the tan delta loss. (C) 1995 John Wiley and Sons, Inc.
Resumo:
The relationship between microstructure and deformation and damage behaviour during dynamic compression in Ti-3Al-5Mo-5V alloy has been studied using several experimental techniques, including optical microscopy, scanning electron microscopy and microhardness measurements. It was found that the deformation behaviour during dynamic compression was closely related to deformation parameters. After dynamic deformation, the deformation shear band that formed in the titanium alloy had microhardness similar to that of the matrix. However, the microhardness of the white shear band was much higher than the matrix microhardness. The effects of deformation parameters, including deformation rate and deformation degree, on deformation localisation were investigated. Based on the results from the present work, the microstructure and deformation processing parameters can be optimised. In addition, treatment methods after dynamic compression were explored to restore alloy properties. Using post-deformation heat treatment, the microstructure and property inhomogeneity caused by shear bands could be largely removed.
Resumo:
Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.
Resumo:
The southwestern margin of the Eastern Ghats Belt characteristically exposes mafic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K-Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of similar to 1.3 Ga, Sr-Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the mafic dykes could as well be related to continental rifting, around 1.3 Ga, which may have been initiated by intra-plate volcanism.
Resumo:
This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin
Resumo:
The area studied is located on the north-easternmost portion of the Borborema Province, on the so-called São José de Campestre Massif, States of RN and PB, Northeast Brazil. Field relations and petrographic, geochemical and isotope data permitted the separation of five suites of plutonic rocks: alkali-feldspar granite (Caxexa Pluton), which constitutes the main subject of this dissertation, amphibole-biotite granite (Cabeçudo Pluton), biotite microgranite, gabbronorite to monzonite (Basic to Intermediate Suite) and aluminous granitoid. The Caxexa Pluton is laterally associated to the Remígio Pocinhos Shear Zone, with its emplacement along the mylonitic contact between the gneissic basement and the micashists. This pluton corresponds to a syntectonic intrusion elongated in the N-S direction, with about 50 km2 of outcropping surface. It is composed exclusively of alkali-feldspar granites, having clinopyroxene (aegirine-augite and hedenbergite), andradite-rich garnet, sphene and magnetite. It is classified geochemically as high silica rocks (>70 % wt), metaluminous to slightly peraluminous (normative corindon < 1%), with high total alkalis (>10% wt), Sr, iron number (#Fe=90-98) and agpaitic index (0.86-1.00), and positive europium anomaly. The Cabeçudo Pluton is composed of porphyritic rocks, commonly containing basic to intermediate magmatic enclaves often with mingling and mixing textures. Petrographically, it presents k-feldspar and plagioclase phenocrysts as the essential minerals, besides the accessories amphibole, biotite, sphene and magnetite. It is metaluminous and shows characteristics transitional between the calc-alkaline and alkaline series (or monzonitic subalkaline). Its REE content is greater than those ones of the Caxexa Pluton and biotite microgranite, and all spectra have negative europium anomalies. The biotite microgranites occur mainly on the central and eastern portion of the mapped area, as dykes and sheets with decimetric thickness, hosted principally in orthogneisses and micashists. Their field relationships as regards the Caxexa and Cabeçudo plutons suggested that they are late-tectonic intrusions. They are typically biotite granites, having also sphene, amphibole, allanite, opaques and zircon in the accessory assemblage. Geochemically they can be distinguished from the porphyritic types because the biotite microgranites are more evolved, peraluminous, and have more fractionated REE spectra. The Basic to Intermediate rocks form a volumetrically expressive elliptical, kilometric scale body on the Southeast, as well as sheets in micashists. They are classified as gabbronorites to monzonites, with the two pyroxenes and biotite, besides subordinated amounts of amphibole, sphene, ilmenite and allanite. These rocks do not show a well-defined geochemical trend, however they may possibly represent a monzonitic (shoshonitic) series. Their REE spectra have negative europium anomalies and REE contents greater than the other suites. The aluminous granitoids are volumetrically restricted, and have been observed in close association with migmatised micashists bordering the gabbronorite pluton. They are composed of almandine-rich garnet, andalusite, biotite and muscovite, and are akin to the peraluminous suites. Rb-Sr (whole rock) and Sm-Nd (whole-rock and mineral) isotopes furnished a minimum estimate of the crystallization (578±14 Ma) and the final resetting age of the Rb-Sr system (536±4 Ma) in the Caxexa Pluton. The aluminous granitoid has a Sm-Nd garnet age similar to that one of the Caxexa Pluton, that is 574±67 Ma. The strong interaction of shear bands and pegmatite dykes favoured the opening of the Rb-Sr system for the Caxexa Pluton and biotite microgranite. The amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer indicate minimum conditions of 560°C and 7 kbar for the Cabeçudo Pluton, 730°C and 6 kbar for the microgranite and 743°C and 5 kbar for the basic to intermediate suite. The Zr saturation geothermometer reveals temperatures of respectively 855°C, 812°C and 957°C for those suites, whereas the Caxexa Pluton shows temperatures of around 757°C. The Caxexa, Cabeçudo and microgranites suites crystallized under high fO2 (presence of magnetite). On the other hand, the occurrence of ilmenite suggests less oxidant conditions in the basic to intermediate suite. Field relations demonstrate the intrusive character of the granitoids into a tectonically relatively stable continental crust. This is corroborated by petrographic and geochemical data, which suggest a late- or post-collisional tectonic context. It follows that the generation and emplacement of those granitoid suites is related to the latest events of the Brasiliano orogeny. Finally, the relationships between eNd (600 Ma), TDM (Nd) and initial Sr isotope ratio (ISr) do not permit to define the precise sources of the granitoids. Nevertheless, trace element modelling and isotopic comparisons suggest the participation of the metasomatised mantle in the generation of these suites, probably modified by different degrees of crustal contamination. In this way, a metasomatised mantle would not be a particular characteristic of the Neoproterozoic lithosphere, but a remarkable feature of this portion of the Borborema Province since Archaean and Paleoproterozoic times.
Resumo:
Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).
Resumo:
O mapeamento geológico realizado à sudeste de Água Azul do Norte/PA, porção norte do Domínio Rio Maria, aliado aos dados petrográficos e geoquímicos permitiram a individualização de associações TTGs e leucogranodioritos. Nesta região, os trabalhos de mapeamento foram realizados apenas em escala regional o que possibilitou a extrapolação da área de ocorrência de rochas similares ao Tonalito Caracol e rondhjemito Mogno. Os TTGs estudados foram individualizados em duas unidades com base no conteúdo de minerais máficos, concentrações de epidoto magmático e no grau de saussuritização (descalcificação) do plagioclásio em: (1) Epidoto-Biotita Tonalito e; (2) Biotita Trondhjemito. Em geral, são rochas que apresentam foliação definida pelo bandamento composicional, localmente pode ser perturbada por dobras e bandas de cisalhamento. Suas características geoquímicas são compatíveis com os TTGs arqueanos do grupo de alto Al2O3, sendo ainda relativamente pobres em elementos ferromagnesianos, com padrões ETRP moderado a fortemente fracionados e anomalias de Eu discretas. As diferenças nas razões La/Yb e anomalia de Eu, possibilitou a discriminação de três grupos distintos de rochas: Os TTGs pertencentes ao grupo de alto La/Yb e Sr/Y são similares às rochas do Trondhjemito Mogno, descritos no Domínio Rio Maria. Estas rochas incluem a maioria das amostras da unidade Biotita Trondhjemito. No caso dos TTGs com médio a baixo La/Yb e Sr/Y quando comparadas com as rochas do Domínio Rio Maria possuem forte correlação com o Tonalito Caracol. Estes grupos são compostos principalmente pela unidade Epidoto-Biotita Tonalito, incluindo também amostras isoladas do Biotita Trondhjemito. Com base nos critérios utilizados acima, os leucogranodioritos da área foram divididos em dois grupos: Biotita Granodiorito e Leucogranodiorito. As rochas do Biotita Granodiorito possuem ampla ocorrência espacial na porção oeste da área, relações de campo mostram que são intrusivas nos granitoides TTGs. Os dados geoquímicos apontam que o Biotita Granodiorito possui padrões de ETR fortemente fracionados, com alta razão La/Yb (33 – 186) e anomalia de Eu positiva (1,11 < Eu/Eu* < 3,26), enquanto os leucogranodioritos mostram padrões levemente fracionados, com moderadas razões La/Yb (24,7 – 34,7) e anomalia de Eu ausente (Eu/Eu*= 1,03). Os diagramas de Harker para elementos maiores e traços não favorecem uma ligação genética por processo de cristalização fracionada entre o Biotita Granodiorito e as associações TTGs, uma vez que apresentam trends de evolução distintos, indicando portanto que as condições de sua gênese e diferenciação foram bem diferentes, tampouco por fusão parcial de uma fonte TTG, pelo fato de não apresentar significante anomalia negativa de Eu, bem como por exibir padrões similares de fracionamento de ETR em relação aos TTGs, atestando que essas rochas provavelmente não foram oriundas de magmas precursores desses TTGs.
Resumo:
The weakening mechanisms involved in the collapse of complex impact craters are controversial. The Araguainha impact crater, in Brazil, exposes a complex structure of 40 km in diameter, and is an excellent object to address this issue. Its core is dominated by granite. In addition to microstructural observations, magnetic studies reveal its internal fabric acquired during the collapse phase. All granite samples exhibit impact-related planar deformation features (PDFs) and planar fractures (PFs), which were overprinted by cataclasis. Cataclastic deformation has evolved from incipient brittle fracturing to the development of discrete shear bands in the center of the structure. Fracture planes are systematically decorated by tiny grains (<10 mu m) of magnetite and hematite, and the orientation of magnetic lineation and magnetic foliation obtained by the anisotropies of magnetic susceptibility (AMS) and anhysteretic remanence (AAR) are perfectly coaxial in all studied sites. Therefore, we could track the orientation of deformation features which are decorated by iron oxides using the AMS and AAR. The magnetic fabrics show a regular pattern at the borders of the central peak, with orientations consistent with the fabric of sediments at the crater's inner collar and complex in the center of the structure. Both the cataclastic flow revealed from microstructural observations and the structural pattern of the magnetic anisotropy match the predictions from numerical models of complex impact structures. The widespread occurrence of cataclasis in the central peak, and its orientations revealed by magnetic studies indicate that acoustic fluidization likely operates at all scales, including the mineral scales. The cataclastic flow made possible by acoustic fluidization results in an apparent plastic deformation at the macroscopic scale in the core. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Diese Doktorarbeit untersucht das Verhalten von komplexenFluidenunter Scherung, insbesondere den Einfluss von Scherflüssenauf dieStrukturbildung.Dazu wird ein Modell dieser entworfen, welches imRahmen von Molekulardynamiksimulationen verwendet wird.Zunächst werden Gleichgewichtseigenschaften dieses Modellsuntersucht.Hierbei wird unter anderem die Lage desOrdnungs--Unordnungsübergangs von derisotropen zur lamellaren Phase der Dimere bestimmt.Der Einfluss von Scherflüssen auf diese lamellare Phase wirdnununtersucht und mit analytischen Theorien verglichen. Die Scherung einer parallelen lamellaren Phase ruft eineNeuausrichtung des Direktors in Flussrichtung hervor.Das verursacht eine Verminderung der Schichtdicke mitsteigender Scherrateund führt oberhalb eines Schwellwertes zu Ondulationen.Ein vergleichbares Verhalten wird auch in lamellarenSystemengefunden, an denen in Richtung des Direktors gezogen wird.Allerdings wird festgestellt, dass die Art der Bifurkationenin beidenFällen unterschiedlich ist.Unter Scherung wird ein Übergang von Lamellen parallelerAusrichtung zu senkrechter gefunden.Dabei wird beoachtet, dass die Scherspannung in senkrechterOrientierungniedriger als in der parallelen ist.Dies führt unter bestimmten Bedingungen zum Auftreten vonScherbändern, was auch in Simulationen beobachtet wird. Es ist gelungen mit einem einfachen Modell viele Apsekte desVerhalten vonkomplexen Fluiden wiederzugeben. Die Strukturbildung hängt offensichtlich nurbedingt von lokalen Eigenschaften der Moleküle ab.