992 resultados para Shasta snow wreath


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is divided in three chapters, each one covering one topic. Initially, the thermo-mechanical and impact properties of materials used for back protectors have been analysed. Dynamical mechanical analysis (DMTA) has shown that materials used for soft-shell protectors present frequency-sensitive properties. Furthermore, through impact tests, the shock absorbing characteristics of the materials have been investigated proving the differences between soft and hard-shell protectors; moreover it has been demonstrated that the materials used for soft-shell protectors maintain their protective properties after multi-impacts. The second chapter covers the effect of the visco-elastic properties of the thermoplastic polymers on the flexural and rebound behaviours of ski boots. DMTA analysis on the materials and flexural and rebound testing on the boots have been performed. A comparison of the results highlighted a correlation between the visco-elastic properties and the flexural and rebound behaviour of ski boots. The same experimental methods have been used to investigate the influence of the design on the flexural and rebound behaviours. Finally in the third chapter the thermoplastic materials employed for the construction of ski boots soles have been characterized in terms of chemical composition, hardness, crystallinity, surface roughness and coefficient of friction (COF). The results showed a relation between material hardness and grip, in particular softer materials provide more grip with respect to harder materials. On the contrary, the surface roughness has a negative effect on friction because of the decrease in contact area. The measure of grip on inclined wet surfaces showed again a relation between hardness and grip. The performance ranking of the different materials has been the same for the COF and for the slip angle tests, indicating that COF can be used as a parameter for the choice of the optimal material to be used for the soles of ski boots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La determinazione del modulo di Young è fondamentale nello studio della propagazione di fratture prima del rilascio di una valanga e per lo sviluppo di affidabili modelli di stabilità della neve. Il confronto tra simulazioni numeriche del modulo di Young e i valori sperimentali mostra che questi ultimi sono tre ordini di grandezza inferiori a quelli simulati (Reuter et al. 2013)⁠. Lo scopo di questo lavoro è stimare il modulo di elasticità studiando la dipendenza dalla frequenza della risposta di diversi tipi di neve a bassa densità, 140-280 kg m-3. Ciò è stato fatto applicando una compressione dinamica uniassiale a -15°C nel range 1-250 Hz utilizzando il Young's modulus device (YMD), prototipo di cycling loading device progettato all'Istituto per lo studio della neve e delle valanghe (SLF). Una risposta viscoelastica della neve è stata identificata a tutte le frequenze considerate, la teoria della viscoelasticità è stata applicata assumendo valida l'ipotesi di risposta lineare della neve. Il valore dello storage modulus, E', a 100 Hz è stato identificato come ragionevolmente rappresentativo del modulo di Young di ciascun campione neve. Il comportamento viscoso è stato valutato considerando la loss tangent e la viscosità ricavata dai modelli di Voigt e Maxwell. Il passaggio da un comportamento più viscoso ad uno più elastico è stato trovato a 40 Hz (~1.1•10-2 s-1). Il maggior contributo alla dissipazione è nel range 1-10 Hz. Infine, le simulazioni numeriche del modulo di Young sono state ottenute nello stesso modo di Reuter et al.. La differenza tra le simulazioni ed i valori sperimentali di E' sono, al massimo, di un fattore 5; invece, in Reuter et al.⁠, era di 3 ordini di grandezza. Pertanto, i nostri valori sperimentali e numerici corrispondono meglio, indicando che il metodo qui utilizzato ha portato ad un miglioramento significativo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perennial snow and ice (PSI) extent is an important parameter of mountain environments with regard to its involvement in the hydrological cycle and the surface energy budget. We investigated interannual variations of PSI in nine mountain regions of interest (ROI) between 2000 and 2008. For that purpose, a novel MODIS data set processed at the Canada Centre for Remote Sensing at 250 m spatial resolution was utilized. The extent of PSI exhibited significant interannual variations, with coefficients of variation ranging from 5% to 81% depending on the ROI. A strong negative relationship was found between PSI and positive degree-days (threshold 0°C) during the summer months in most ROIs, with linear correlation coefficients (r) being as low as r = −0.90. In the European Alps and Scandinavia, PSI extent was significantly correlated with annual net glacier mass balances, with r = 0.91 and r = 0.85, respectively, suggesting that MODIS-derived PSI extent may be used as an indicator of net glacier mass balances. Validation of PSI extent in two land surface classifications for the years 2000 and 2005, GLC-2000 and Globcover, revealed significant discrepancies of up to 129% for both classifications. With regard to the importance of such classifications for land surface parameterizations in climate and land surface process models, this is a potential source of error to be investigated in future studies. The results presented here provide an interesting insight into variations of PSI in several ROIs and are instrumental for our understanding of sensitive mountain regions in the context of global climate change assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plutonium is present in the environment as a consequence of atmospheric nuclear tests, nuclear weapons production and industrial releases over the past 50 years. To study temporal trends, a high resolution Pu record was obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (Monte Rosa, 4450 m a.s.l.), dating from 1945 to 1990. The 239Pu signal was recorded directly, without decontamination or preconcentration steps, using an Inductively Coupled Plasma - Sector Field Mass Spectrometer (ICP-SFMS) equipped with an high efficiency sample introduction system, thus requiring much less sample preparation than previously reported methods. The 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak lasted from 1954/55 to 1958 and was caused by the first testing period reaching a maximum in 1958. Despite a temporary halt of testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak due to long atmospheric residence times. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the signing of the "Limited Test Ban Treaty" between USA and USSR in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975) is characterized by irregular Pu concentrations with smaller peaks (about 20-30% of the 1964 peak) which might be related to the deposition of Saharan dust contaminated by the French nuclear tests of the 1960s. The data presented are in very good agreement with Pu profiles previously obtained from the Col du Dome ice core (by multi-collector ICP-MS) and Belukha ice core (by Accelerator Mass Spectrometry, AMS). Although a semi-quantitative method was employed here, the results are quantitatively comparable to previously published results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantification of the structural properties of snow is traditionally based on model-based stereology. Model-based stereology requires assumptions about the shape of the investigated structure. Here, we show how the density, specific surface area, and grain boundary area can be measured using a design-based method, where no assumptions about structural properties are necessary. The stereological results were also compared to X-ray tomography to control the accuracy of the method. The specific surface area calculated with the stereological method was 19.8 ± 12.3% smaller than with X-ray tomography. For the density, the stereological method gave results that were 11.7 ± 12.1% larger than X-ray tomography. The statistical analysis of the estimates confirmed that the stereological method and the sampling used are accurate. This stereological method was successfully tested on artificially produced ice beads but also on several snow types. Combining stereology and polarisation microscopy provides a good estimate of grain boundary areas in ice beads and in natural snow, with some limitatio