947 resultados para Sewage sludge digestion.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the risk of groundwater contamination from organic substances in sewage sludge from wastewater treatment stations was evaluated in its worst case. The sewage sludge was applied as fertilizer in corn culture, prioritizing the substances for monitoring. The assessing risk took place in a Typic Distrophic Red Latossol (TDRL) area, in the county district of Jaguariúna, SP. The simulators CMLS-94 and WGEN were used to evaluate the risk of twenty-eight organic substances in sewage sludge to leach to groundwater. The risk of groundwater contamination was accomplished for a single sludge dose application in a thousand independent and equally probable years, simulated to esteem the substances leaching in one year after the application date of the sludge. It is presented the substances that should be priorly monitored in groundwater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The objectives of this study were to evaluate the combined effects of soil bioticand abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two typesofsewagesludge intosoil ina 5-years field assay under tropical conditions and topredict the effectsof these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. Amultiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has established that the use of a computer model, the Anaerobic Digestion Model 1, is suitable for investigation of the stability and energy balance of the anaerobic digestion of food waste. In simulations, digestion of undiluted food waste was less stable than that of sewage sludge or mixtures of the two, but gave much higher average methane yields per volume of digester. In the best case scenario simulations, food waste resulted in the production of 5.3 Nm3 of methane per day per m3 of digester volume, much higher than that of sewage sludge alone at 1.1 Nm3 of methane per day per m3. There was no substantial difference in the yield per volatile solids added. Food waste, however, did not sustain a stable digestion if its cation content was below a certain level. Mixing food waste and sewage sludge allowed digestion with a lower cation content. The changes in composition of food waste feedstock caused great variation in biogas output and even more so volatile fatty acid concentration, which lowered the digestion stability. Modelling anaerobic digestion allowed simulation of failure scenarios and gave insights into the importance of the cation/anion balance and the magnitude of variability in feedstocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB(TM)/Simulink(R) is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

造纸行业是造成我国水环境有机污染物的重要污染源之一,其水污染的特点是小厂多、草浆多、工艺落后、污染扩散面广、造成废 水排放量大,每年排放的废水量约39亿立方米,占全国工业废水排放量的1/6,其中有机污染物(以BOD5计)160万吨左右,约占全 国工业废水中有机污染物总量的1/4。尤以占全国制浆造纸行业90%以上的碱法草浆造纸厂的蒸煮黑液量大面广,除含有机物外,还 含有木质素、残碱、硫化物、氯化物等污染物,属于PH值高、色度深、难于治理的高浓度有机废水,对水体污染特别严重,各地要 求治理呼声很高,急待研究并尽快找出各种有效的治理途径。对于碱法草浆蒸煮,黑液高浓度废水的治理,有各种方法,根据国内 的研究进展和我们已有试验工作表明,最经济有效,具有实用价值,在生产上可获得成功是厌氧处理法。近10多年来,国外关于高 效厌氧处理技术研究进展迅速,并出现了多种多样的工艺设备,如高效厌氧生物反应器,并在实用化方面取得了很大成绩,建立了 生产性装置,达到了高负荷运行,效果良好。本试验是根据我们已有研究基础,针对我国国情,对小型制浆造纸厂水污染防治除了 开发碱回收及各种综合利用技术外,要特别加强废水(废液)实用技术研究的指导思想,本试验采用改进型的上流式厌氧污泥床反应 器,设计了两种试验方案,通过试验结果如下。1. 试验方案I—碱法草浆黑液酸化和厌氧发酵I号UASB反应器动态模型试验结果表 明:(1). 采用中温35℃±1℃高效厌氧反应器USAB内装有填料(陶粒)和三相分离器,具有保持高浓度生物量和防止污泥流失的特点 ,污泥浓度Vs 可达30%以上,因而具有高效、节能、产能、滞留期短的优点,当进水CODcr在7500-10000mg/l,HRT由7天缩短到3天 ,有机容积负荷在1.22gCODcr/l·d-3.43gCODcr/l·d时,CODcr平均去除率可达55%-45.5%,最高CODcr去除率可达60.2-63.5%, BOD5去除率可达75.9-83.2%,沼气容积产气率可达0.29-0.67l/l·d,每克CODcr转化为沼气产率达0.39-0.48l/gCODcr·d,CH4含量 65.8-75.5%。厌氧发酵出水再用化学法进行后处理脱除难降解的木质素,CODcr总去除率达80%以上。(2). 动态试验结果表明:采 用酸化—厌氧发酵处理黑液工艺合理,技术路线可行。2. 试验方案II—黑液用化学法(Hcl)去除木质素进行厌氧发酵,II号UASB反 应器动态模型试验结果表明:(1). 采用中温35℃±1℃高效厌氧反应器UASB(内有软填料),当进水CODcr7000-13000mg/l左右,HRT 由6天缩短到1天,有机负荷由0.98gCODcr/l·d增加到11gCODcr/l·d时,COD平均去除率均可稳定在70-77%,BOD5去除率为87.3- 93.1%,沼气容积产气率0.21-2.6l/l·d,每克CODcr转化为沼气产率为0.39-0.48l/gCODcr·d,高的可达0.53l/gCODcr·d,转化 率较高,CH4含量63-70%。(2). 试验证明碱法草浆黑液物化预处理—厌氧发酵处理的技术路线也是可行的,工艺合理、效果较好。 在有条件的工厂可采用。3.厌氧发酵阶段几大类群微生物计数表明:(1). 当发酵工艺和运行处于相对稳定状态时,微生物群体的 组成也达到相对的稳定,各类微生物之间保持动态平衡关系。当产乙酸菌的数量为107-108个/ml时,产甲烷菌的数量为105-106 个/ml,当产乙酸菌数量为106-107个/ml时,产甲烷菌的数量为103-105个/ml。(2).稳态运行条件下,黑液预处理为甲烷发酵创造 了有利的生态环境,获得了较好的处理效果和较高的COD转化为沼气的产率0.39-0.48l/g·CODcr·d,反应器中形成较为稳定而数 量较下水污泥中高1-2个数量级的厌氧发酵微生物区系组成。这一结果为黑液厌氧发酵提供了微生物理论依据。Paper industry is one of the important pollution source of water environment in our country. Its character of water pollution is many small factories, much grass pulp, disadvantageous technique, large preading area of pullution. Its effluent makes up 1/6 of whole country's industry wastwater. Its organic pollutant accounts 1/4 of whole country's. Alkaline grass paper pulp effluent with pollutants such as ligoin, remaining alkali sulfide, chloride besides organic material, is a kind of high concentrate organic wastewater which has high PH walug, dark colour and is difficult in treatment. There is urgent require to find ways to treat the wastewater. There are different ways to treat alkaline paper grass pulp effluent. According to the research advances and our experiment work, the most economical and useful way is anaerobic degradation which was advanced quick in last ten years. In the control of waste water of small pulp paper mill, the study of wastewater utilization technology should be emphasized, besides alkaline retrieving and different kinds of comprehensive utilization technology. Our experiment used modified UASB(Upflow Anaerobic Sludge Blanket Reactor). Two kinds of plan were disgned. The results are lined below. 1. The first experiment plant-aciding black pulp effluent and methanogenic digestion. The dynamic model experiment results of I-UASB reactor showed: (1)The mesophilic(35℃±1℃)high effect UASB reactor having haydite and threee state seperation in it had the character of keeping high bioimass concentration and preventing losss of sludge. It had advantages of high effect, energe saving, energe prodcing and short HRT(Hydroulic retention time). When the influent COD was 7500-10000mg, HRT was shortened from 7 days to 3days, organic loading rate was 1.22g-3.43COD/l· d, the average COD removal efficiency was 55%-45%. The highest COD efficiency was 60.2-63.5%, BOD removal of 75.9 -83.4% was achieved. Biogass production rate were up to 0.29-0.67l/l·d. Biogass converted efficiency from every gram of COD could reach 0.39-0.48l/gCOD·d. Methane content was 65.0-75.5%. Chemical method was used to deplate lignin in anaerobic digestion effluent. Total COD removal efficiency could be more than 80%. (2)Using aciding annaerobic digestion to treat the black effluent was reseanable in technique and technology. 2. The second experiment plan-anaerobic digestion was used after the chemical method was used to deplate lignin in the black effluent. The result of dynamic experiment of II-UASB reactor showed: (1)High effect mesophilic (35℃±1℃)UASB reactor having soft slaffing in was used. When influent COD was about 7000-13000mg/l, HRT was shortened from 6 days to 1 day and organic loading rate was increased from 0.90 to 11g COD /l·d, average COD removal efficiency remained stable on 70-77%. BOD, removal efficiency was between 87.3-93.1%. Biogass production rate was 0.2-2.6l/l ·d .Biogass converted efficiency from a gram of COD was 0.39-0.481/gCOD·d with the high value of 0.53l/gCOD·d. Methane content was 63-70%. (2)The way that using physical, chemical Pre-treatment-anaerobic digestion to treat alkaline black effluent is feasible and can be used in some factories when the condition exists. 3. Counting of several class of microoganisms in anaerobic digestion stage showed: (1)As the disgestion was in stable motion, the compositon of microorganic colony could get relative stable. Dynamic balance was remaining among different kinds of microorganism such as methanogenic bacteria, Acidogenic bacteria, sulfate reducing bacteria, and heterotrophic bacteria. (2)Under stable motion, the pre-treatment of black effluent produced favourable eco-enviroment for methanegenic digestion. Good treatment effect and high biogass convertent efficiency from COD(0.39-0.48l/g·COD· d)were gotten. Some stable and high quantity(10-100times more than sewage sludge)microorganism colony were formed in the reactor. This result provided theoretical basis for anaerobic digestion of black effluent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biogas from anaerobic digestion of sewage sludge is a renewable resource with high energy content, which is formed mainly of CH4 (40-75 vol.%) and CO2 (15-60 vol.%) Other components such as water (H2O, 5-10 vol.%) and trace amounts of hydrogen sulfide and siloxanes can also be present. A CH4-rich stream can be produced by removing the CO2 and other impurities so that the upgraded bio-methane can be injected into the natural gas grid or used as a vehicle fuel. The main objective of this paper is to develop a new modeling methodology to assess the technical and economic performance of biogas upgrading processes using ionic liquids which physically absorb CO2. Three different ionic liquids, namely the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-hexyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl]imide and trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide, are considered for CO2 capture in a pressure-swing regenerative absorption process. The simulation software Aspen Plus and Aspen Process Economic Analyzer is used to account for mass and energy balances as well as equipment cost. In all cases, the biogas upgrading plant consists of a multistage compressor for biogas compression, a packed absorption column for CO2 absorption, a flash evaporator for solvent regeneration, a centrifugal pump for solvent recirculation, a pre-absorber solvent cooler and a gas turbine for electricity recovery. The evaluated processes are compared in terms of energy efficiency, capital investment and bio-methane production costs. The overall plant efficiency ranges from 71-86 % whereas the bio-methane production cost ranges from £6.26-7.76 per GJ (LHV). A sensitivity analysis is also performed to determine how several technical and economic parameters affect the bio-methane production costs. The results of this study show that the simulation methodology developed can predict plant efficiencies and production costs of large scale CO2 capture processes using ionic liquids without having to rely on gas solubility experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As maiores limitações para o uso do lodo de esgoto em áreas agrícolas são os riscos de contaminação do solo com metais pesados e sua possível transferência para a cadeia alimentar. Objetivou-se, com este estudo, avaliar os teores de Cd, Cr, Pb e Zn no solo, utilizando-se dois métodos de extração (HNO3 + H2O2 + HCl e HClO4 + HF), o acúmulo destes elementos em plantas de milho cultivadas em Latossolo Vermelho eutroférrico no nono ano de aplicação de lodo de esgoto, bem como seus efeitos na produção de matéria seca e na produtividade de grãos. O experimento foi instalado em condições de campo em Jaboticabal-SP, no delineamento em blocos casualizados, com quatro tratamentos e cinco repetições. Os tratamentos corresponderam a doses acumuladas por nove anos consecutivos de lodo de esgoto (45,0; 90,0 e 127,5 t ha-1, base seca) e um tratamento testemunha que recebeu fertilização mineral com base na análise de solo. O lodo de esgoto foi aplicado manualmente e incorporado ao solo com grade a 0,1 m de profundidade antes da semeadura do milho. Os teores médios de Cd no solo não variaram em função das doses de lodo e dos métodos de extração. Por outro lado, os teores médios de Cr, Pb e Zn no solo obtidos pela digestão com HClO4 + HF foram de 72,4; 31,8 e 62,3 %, respectivamente, superiores àqueles encontrados pela digestão que empregou HNO3 + H2O2 + HCl. Contudo, quando se avaliou apenas o efeito das doses de lodo no solo, em ambos os métodos de extração, verificou-se diferença entre os tratamentos apenas para a concentração de Zn no solo. Exceto o Cd, que não foi detectado, de modo geral, os teores e os acúmulos de Cr, Pb e Zn nas partes das plantas de milho aumentaram com as aplicações de lodo de esgoto. Os teores de Cr, Pb e Zn nos grãos, quando detectados, permaneceram abaixo dos limites máximos estabelecidos para o consumo humano conforme a legislação brasileira. A adição de lodo de esgoto e a fertilização mineral, por longo período, apresentaram efeitos semelhantes na produção de matéria seca e na produtividade de grãos de milho.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of sewage sludge in agricultural land as a means of sludge disposal and recycling has been shown to be economical and suitable because of the presence of nutrients such as nitrogen and phosphorus. However, municipal sludges often contain high quantities of toxic metals and other compounds that must be removed for its safe use in agricultural soils. The biological leaching of metals from sewage sludges has been shown to be a promising technique for metal detoxifying in such complex matrix. The process efficiency is dependent on several physico-chemical parameters, such as total solids concentration, metal forms, pH-ORP, and temperature. Scale-up of the process has not yet been defined and is still pursuing the correct operational design. Current research involving the bioleaching of metals from sewage sludge and its application to land, which affects soil physical properties, are presented and discussed.