882 resultados para Separation distances
Resumo:
An enzyme system which catalysed the conversion of anthranilic acid to catechol has been purified 20-fold from a cell-free leaf extract of Tecoma stans. The optimum substrate concentration was 10−3 M and optimum temperature for the reaction was 45°. The presence of a multi-enzyme system was inferred from inhibition studies. The formation of catechol was inhibited by Mg2+, Zn2+, and Co2+ ions, whereas anthranilic acid disappearance was not affected to the same extent. The effect of metal chelating agents like EDTA, cyanide and pyrophosphate showed a similar trend. PCMB inhibited catechol formation but had no effect on anthranilic acid disappearance. The reaction was not inhibited by catalase, nor was it activated by peroxide-donating systems. This ruled out the possibility of peroxidative type of reaction. The overall reaction is markedly activated by NADPH and THFA. This multi-enzyme was separated into three different components, by fractionation with Alumina Cγ and calcium phosphate gels. The overall reaction catalysed by these components can be represented as anthranilic acid→3-hydroxy anthranilic acid→o-aminophenol→catechol.
Resumo:
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment.The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The literature review elucidates the mechanism of oxidation in proteins and amino acids and gives an overview of the detection and analysis of protein oxidation products as well as information about ?-lactoglobulin and studies carried out on modifications of this protein under certain conditions. The experimental research included the fractionation of the tryptic peptides of ?-lactoglobulin using preparative-HPLC-MS and monitoring the oxidation process of these peptides via reverse phase-HPLC-UV. Peptides chosen to be oxidized were selected with respect to their amino acid content which were susceptible to oxidation and fractionated according to their m/z values. These peptides were: IPAVFK (m/z 674), ALPMHIR (m/z 838), LIVTQTMK (m/z 934) and VLVLDTDYK (m/z 1066). Even though it was not possible to solely isolate the target peptides due to co-elution of various fractions, the percentages of target peptides in the samples were satisfactory to carry out the oxidation procedure. IPAVFK and VLVLDTDYK fractions were found to yield the oxidation products reviewed in literature, however, unoxidized peptides were still present in high amounts after 21 days of oxidation. The UV data at 260 and 280 nm enabled to monitor both the main peptides and the oxidation products due to the absorbance of aromatic side-chains these peptides possess. ALPMHIR and LIVTQTMK fractions were oxidatively consumed rapidly and oxidation products of these peptides were observed even on day 0. High rates of depletion of these peptides were acredited to the presence of His (H) and sulfur-containing side-chains of Met (M). In conclusion, selected peptides hold the potential to be utilized as marker peptides in ?-lactoglobulin oxidation.
Resumo:
Tlie sclxuntion and clraractcrization of vitamins Al and An nnd related compoundsby reversed-pllasc paper cliromatogrnpl~y as well as ly thin-lqxr chromategraphy have hen rcportccl carlicrl * $. Thin-lnycr chromatography has also been used for the separatinn and charncterizatio11 of carotenoids from natural sourccs3~ ‘1. I-Iowcver, 130tr.rc,1~1~ofib scrvccl that carotenoid misturcs cannot be separated on a sin& aclsorhnt with ;1 sin& solvent. The scparntion and clctermi1wtion of carotenoid alclclydes from plants, microorganisms and animnl tissues have lxxn carriecl out by nicans of thin-layer clirf.~li~ato~apI~~U. Apocarotcnals awl apocarotcnoic acid have been detected in ornnges by the same technique’*
Resumo:
We propose in experimental method to study the instability of thin unsteady separation bubbles, i.e. of unsteady boundary layers with reverse flow. The unsteady boundary layer is created by controlled temporal and spatial variations of the velocity external to the boundary layer. We present results of the evolution of instability in different temporally varying flows in a shallow angle diffuser. Depending on the extent of reverse flow in the boundary we observe that instability can be spatially localised.
Resumo:
Separation of printed text blocks from the non-text areas, containing signatures, handwritten text, logos and other such symbols, is a necessary first step for an OCR involving printed text recognition. In the present work, we compare the efficacy of some feature-classifier combinations to carry out this separation task. We have selected length-nomalized horizontal projection profile (HPP) as the starting point of such a separation task. This is with the assumption that the printed text blocks contain lines of text which generate HPP's with some regularity. Such an assumption is demonstrated to be valid. Our features are the HPP and its two transformed versions, namely, eigen and Fisher profiles. Four well known classifiers, namely, Nearest neighbor, Linear discriminant function, SVM's and artificial neural networks have been considered and efficiency of the combination of these classifiers with the above features is compared. A sequential floating feature selection technique has been adopted to enhance the efficiency of this separation task. The results give an average accuracy of about 96.
Resumo:
Traditionally, laminar separation bubbles have been characterised as being 'long' or 'short' on the basis of a two parameter 'bursting' criterion involving a pressure gradient parameter and Reynolds Number at separation. In the present work we suggest a refined bursting criterion, which takes into account not just the length of the bubble but also the maximum height of the bubble, thereby shedding some light on the less understood phenomenon of 'bursting' in laminar separation bubbles.
Resumo:
Many transition metal oxide materials of high chemical purity are not necessarily monophasic. Thus, single crystals of chemically pure rare earth manganites and cobaltates of the general formula Ln1-xAxMO3 (Ln=rare earth metal, A=alkaline earth metal, M=Mn, Co) exhibit the phenomenon of electronic phase separation wherein phases of different electronic and magnetic properties coexist. Such phase separation, the length scale of which can vary anywhere between a few nanometers to microns, gives distinct signatures in X-ray and neutron diffraction patterns, electrical and magnetic properties, as well as in NMR and other spectroscopies. While the probe one employs to investigate electronic phase separation depends on the length scale, it is noteworthy that direct imaging of the inhomogeneities has been accomplished. Some understanding of this phenomenon has been possible on the basis of some of the theoretical models, but we are far from unraveling the varied aspects of this new phenomenon. Herein, we present the highlights of experimental techniques and theoretical approaches, and comment on the future outlook for this fascinating phenomenon
Resumo:
Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 x 10(3) to 6.5 x 10(5) to study the effect of natural ventilation on the boundary layer separation and near-wake Vortex shedding characteristics. In the subcritical range of Re (<2 x 10(5)), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 x 10(5)), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag.
Resumo:
1H NMR spin-lattice relaxation time (T1) measurements have been carried out with various sugars, viz. methyl alpha-D-glucopyranoside (alpha-MeGluP), methyl beta-D-lucopyranoside (beta-MeGluP), methyl alpha--annopyranoside (alpha-MeManP), maltose (4-O-alpha-D-glucopyranosyl--glucose), nigerose (3-O-alpha-D-glucopyranosyl-D-glucose), p-nitrophenyl alpha-maltoside (PNP-alpha-maltoside) and p-nitrophenyl beta-maltoside (PNP-beta-maltoside) to determine the distances of sugar protons from Mn2+ in concanavalin A (Con A). With a rotational correlation time of 1.58 x 10(-10) s determined, distances were calculated using Solomon-Bloembergen equation. The data obtained indicated differences in disposition of different groups in the binding site of Con A. An average value of about 10 A was obtained for the distances of sugar protons from Mn2+ in Con A. In the case of mono and disaccharides, the non-reducing end sugar unit was found to be closer to Mn2+ than the reducing end one.
Resumo:
The conformational dependence of interproton distances in model proline peptides has been investigated in order to facilitate interpretation of the results of Nuclear Overhauser Effect (NOE) studies on such peptides. For this purpose two model systems, namely, Ac-Pro-NHMe and Ac-Pro-X-NHMe have been chosen and used. In the former, short interproton distances detectable in NOE experiments permit a clear distinction between conformations with Pro ψ = -300 (helical region) and those in which ψ is around 1200 (polyproline region). For the latter, the variation of distances between the protons of methyl amide and the Pro ring have been studied by superimposing on the Ramachandran map in the (φ3, ψ3) plane. The results show that β-turns and non-β-turn conformations can be readily distinguished from NOE data and such long range NOEs should be detectable for specific non-β-turn conformations. NOEs involving Cβ and Cγ protons are particularly sensitive to the state of pyrrolidine ring puckering.
Resumo:
This dissertation deals with the design, fabrication, and applications of microscale electrospray ionization chips for mass spectrometry. The microchip consists of microchannel, which leads to a sharp electrospray tip. Microchannel contain micropillars that facilitate a powerful capillary action in the channels. The capillary action delivers the liquid sample to the electrospray tip, which sprays the liquid sample to gas phase ions that can be analyzed with mass spectrometry. The microchip uses a high voltage, which can be utilized as a valve between the microchip and mass spectrometry. The microchips can be used in various applications, such as for analyses of drugs, proteins, peptides, or metabolites. The microchip works without pumps for liquid transfer, is usable for rapid analyses, and is sensitive. The characteristics of performance of the single microchips are studied and a rotating multitip version of the microchips are designed and fabricated. It is possible to use the microchip also as a microreactor and reaction products can be detected online with mass spectrometry. This property can be utilized for protein identification for example. Proteins can be digested enzymatically on-chip and reaction products, which are in this case peptides, can be detected with mass spectrometry. Because reactions occur faster in a microscale due to shorter diffusion lengths, the amount of protein can be very low, which is a benefit of the method. The microchip is well suited to surface activated reactions because of a high surface-to-volume ratio due to a dense micropillar array. For example, titanium dioxide nanolayer on the micropillar array combined with UV radiation produces photocatalytic reactions which can be used for mimicking drug metabolism biotransformation reactions. Rapid mimicking with the microchip eases the detection of possibly toxic compounds in preclinical research and therefore could speed up the research of new drugs. A micropillar array chip can also be utilized in the fabrication of liquid chromatographic columns. Precisely ordered micropillar arrays offer a very homogenous column, where separation of compounds has been demonstrated by using both laser induced fluorescence and mass spectrometry. Because of small dimensions on the microchip, the integrated microchip based liquid chromatography electrospray microchip is especially well suited to low sample concentrations. Overall, this work demonstrates that the designed and fabricated silicon/glass three dimensionally sharp electrospray tip is unique and facilitates stable ion spray for mass spectrometry.
Resumo:
We have investigated the influence of Fe excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (T-c) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field H-c1, it is inferred that excess of Fe suppresses superconductivity. The linear and nonlinear responses of the ac susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity d(rho)/d(T) in the temperature range T-c < T < T-a with T-a being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above T-c in the sample with higher amount of Fe suggests a disorder-driven electronic localization.