898 resultados para Sensor data
Resumo:
Droplet-based digital microfluidics technology has now come of age, and software-controlled biochips for healthcare applications are starting to emerge. However, today's digital microfluidic biochips suffer from the drawback that there is no feedback to the control software from the underlying hardware platform. Due to the lack of precision inherent in biochemical experiments, errors are likely during droplet manipulation; error recovery based on the repetition of experiments leads to wastage of expensive reagents and hard-to-prepare samples. By exploiting recent advances in the integration of optical detectors (sensors) into a digital microfluidics biochip, we present a physical-aware system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure the biochip. A cyberphysical resynthesis technique is used to recompute electrode-actuation sequences, thereby deriving new schedules, module placement, and droplet routing pathways, with minimum impact on the time-to-response. © 2012 IEEE.
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.
Resumo:
Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. The prediction models for VM can be from a large variety of linear and nonlinear regression methods and the selection of a proper regression method for a specific VM problem is not straightforward, especially when the candidate predictor set is of high dimension, correlated and noisy. Using process data from a benchmark semiconductor manufacturing process, this paper evaluates the performance of four typical regression methods for VM: multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), neural networks (NN) and Gaussian process regression (GPR). It is observed that GPR performs the best among the four methods and that, remarkably, the performance of linear regression approaches that of GPR as the subset of selected input variables is increased. The observed competitiveness of high-dimensional linear regression models, which does not hold true in general, is explained in the context of extreme learning machines and functional link neural networks.
Resumo:
Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. Methods with minimal user intervention are required to perform VM in a real-time industrial process. In this paper we propose extreme learning machines (ELM) as a competitive alternative to popular methods like lasso and ridge regression for developing VM models. In addition, we propose a new way to choose the hidden layer weights of ELMs that leads to an improvement in its prediction performance.
Resumo:
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Resumo:
BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.
DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.
CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.
Resumo:
Este trabalho combina esforços de simulação numérica e de análise de dados para investigar a dinâmica em diversos compartimentos (oceano aberto, plataforma continental e zona costeira-estuarina) e, em multiplas escalas, na Margem Continental Leste Brasileira (MCLB). A circulação de largo e mesoescala espacial e a propagação da maré barotrópica são investigadas através de uma configuração aninhada do modelo numérico ROMS. O estudo da dinâmica regional da Baía de Camamu (CMB) baseia-se na análise de dados locais. A MCLB, localizada a SW do Atlântico Sul entre 8±S e 20±S, possui plataforma estreita, batimetria complexa, e baixa produtividade primária. A sua dinâmica é influenciada pela divergência da Corrente Sul Equatorial (CSE). As simulações refletem as conexões sazonais e espaciais entre a Corrente do Brasil e a Contra Corrente Norte do Brasil , em conexão com a dinâmica da CSE. As simulações revelam atividades vorticais nas proximidades da costa e interações com a dinâmica costeira, cujos padrões são descritos. A validação do modelo em mesoescala é baseada em cálculos de energia cinética turbulenta e em dados históricos de transporte. A CMB, localizada a 13±400S, abriga uma comunidade piscatória tradicional e extenso de manguezal. Situa-se porém sobre uma bacia sedimentar com grande reservas de óleo e gás, estando em tensão permanente de impacto ambiental. Neste trabalho sumarizamos as condições físicas regionais e investigamos sua dinâmica interna, focando sua variabilidade em amostragens realizadas sob condições de seca (Setembro de 2004) e de chuva (Julho de 2005). Finalmente, o modelo numérico ROMS é forçado com o sinal de maré, empregando-se uma configuração simples (com coeficientes de atrito de fundo constantes e condições hidrográficas homogéneas), com o intuito de avaliar sua resposta e investigar a natureza da propagação da maré barotrópica na MCLB, convergindo na CMB. A análise da resposta do modelo à maré basea-se em séries históricas do nível do mar para a MCLB e dados recentes da CMB.
Resumo:
O objeto principal desta tese é o estudo de algoritmos de processamento e representação automáticos de dados, em particular de informação obtida por sensores montados a bordo de veículos (2D e 3D), com aplicação em contexto de sistemas de apoio à condução. O trabalho foca alguns dos problemas que, quer os sistemas de condução automática (AD), quer os sistemas avançados de apoio à condução (ADAS), enfrentam hoje em dia. O documento é composto por duas partes. A primeira descreve o projeto, construção e desenvolvimento de três protótipos robóticos, incluindo pormenores associados aos sensores montados a bordo dos robôs, algoritmos e arquitecturas de software. Estes robôs foram utilizados como plataformas de ensaios para testar e validar as técnicas propostas. Para além disso, participaram em várias competições de condução autónoma tendo obtido muito bons resultados. A segunda parte deste documento apresenta vários algoritmos empregues na geração de representações intermédias de dados sensoriais. Estes podem ser utilizados para melhorar técnicas já existentes de reconhecimento de padrões, deteção ou navegação, e por este meio contribuir para futuras aplicações no âmbito dos AD ou ADAS. Dado que os veículos autónomos contêm uma grande quantidade de sensores de diferentes naturezas, representações intermédias são particularmente adequadas, pois podem lidar com problemas relacionados com as diversas naturezas dos dados (2D, 3D, fotométrica, etc.), com o carácter assíncrono dos dados (multiplos sensores a enviar dados a diferentes frequências), ou com o alinhamento dos dados (problemas de calibração, diferentes sensores a disponibilizar diferentes medições para um mesmo objeto). Neste âmbito, são propostas novas técnicas para a computação de uma representação multi-câmara multi-modal de transformação de perspectiva inversa, para a execução de correcção de côr entre imagens de forma a obter mosaicos de qualidade, ou para a geração de uma representação de cena baseada em primitivas poligonais, capaz de lidar com grandes quantidades de dados 3D e 2D, tendo inclusivamente a capacidade de refinar a representação à medida que novos dados sensoriais são recebidos.
Resumo:
Thesis (Master's)--University of Washington, 2012
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
Consider a network where all nodes share a single broadcast domain such as a wired broadcast network. Nodes take sensor readings but individual sensor readings are not the most important pieces of data in the system. Instead, we are interested in aggregated quantities of the sensor readings such as minimum and maximum values, the number of nodes and the median among a set of sensor readings on different nodes. In this paper we show that a prioritized medium access control (MAC) protocol may advantageously be exploited to efficiently compute aggregated quantities of sensor readings. In this context, we propose a distributed algorithm that has a very low time and message-complexity for computing certain aggregated quantities. Importantly, we show that if every sensor node knows its geographical location, then sensor data can be interpolated with our novel distributed algorithm, and the message-complexity of the algorithm is independent of the number of nodes. Such an interpolation of sensor data can be used to compute any desired function; for example the temperature gradient in a room (e.g., industrial plant) densely populated with sensor nodes, or the gas concentration gradient within a pipeline or traffic tunnel.
Resumo:
Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold
Resumo:
The towed array electronics is essentially a multichannel real time data acquisition system. The major challenges involved in it are the simultaneous acquisition of data from multiple channels, telemetry of the data over tow cable (several kilometres in some systems) and synchronization with the onboard receiver for accurate reconstruction. A serial protocol is best suited to transmit the data to onboard electronics since number of wires inside the tow cable is limited. The best transmission medium for data over large distances is the optical fibre. In this a two step approach towards the realization of a reliable telemetry scheme for the sensor data using standard protocols is described. The two schemes are discussed in this paper. The first scheme is for conversion of parallel, time-multiplexed multi-sensor data to Ethernet. Existing towed arrays can be upgraded to ethernet using this scheme. Here the last lap of the transmission is by Ethernet over Fibre. For the next generation of towed arrays it is required to digitize and convert the data to ethernet close to the sensor. This is the second scheme. At the heart of this design is the Analog-to-Ethernet node. In addition to a more reliable interface, this helps in easier fault detection and firmware updates in the field for the towed arrays. The design challenges and considerations for incorporating a network of embedded devices within the array are highlighted
Resumo:
This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.
Resumo:
This report explores methods for determining the pose of a grasped object using only limited sensor information. The problem of pose determination is to find the position of an object relative to the hand. The information is useful when grasped objects are being manipulated. The problem is hard because of the large space of grasp configurations and the large amount of uncertainty inherent in dexterous hand control. By studying limited sensing approaches, the problem's inherent constraints can be better understood. This understanding helps to show how additional sensor data can be used to make recognition methods more effective and robust.