976 resultados para Semicondutores - Propriedades ópticas


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work consists of preparation and characterization of glasses containing transition noble metals and the study of optical properties of such materials. The glasses were prepared by quenching of the glass melt followed by heat treatment and polishing of the monoliths. The structural characterization of glasses was made using differential thermal analysis, X-ray, Raman and infrared spectroscopies, while the optical properties were studied by UV-Vis and M-Lines spectroscopies. Preliminary results have shown that the color of the glasses is dependent on both concentration of silver and the melting temperature of the melt. Controlled heat treatments have been used to induce the crystallization of Ag nanoparticles within the glass. The study of crystallization was accompanied by electron microscopy and UV-Vis spectroscopy. Data from electron diffraction, as well as chemical analysis, EDX, were obtained using a transmission electron microscope. EDX data have shown that the atomic percentage of Ag is higher on the nanoparticle. X-ray diffraction was used in order to characterize the composition of the crystals and cubic AgCl was identified as the main crystallized nanophase obtained after annealing

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the twentieth century the inorganic electronics was largely developed being present in various industrial equipment or household use. However, at the end of that century were verified electronic properties in organic compounds, giving rise to the field of organic electronics. Since then, the physical properties of elementary devices such as diodes and organic transistors have been studied. In this work was studied the properties of diode devices fabricated with a semiconductor polymer, the poly-o-methoxyaniline (POMA). Devices containing electrodes of Au and Al were fabricated with semiconductor polymer of different doping levels. We found that the rectifying behavior for the heterojunctions metal/polimer are reached only for high doping level (with conductivity greater than 1,77. 10-9 S / cm), which gives the devices characteristic of a Schottky diode. The rectifying behavior was observed for electric fields of low magnitude, below the operating field (~ 600 V/cm), while for electric field greater than 600 V/cm the a linear behavior I vs.V was obtained. We determined that this Ohmic behavior arises from the charge transport over the volume of the semiconductor material after the lowering of the metal/semiconductor barrier. In devices with weakly doped semiconductor, the electrical resistance of the volume becomes high and the process of charge transportation is dominated by the volume, for any intensity of the applied electric field

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an effect of the imbalance caused by the damming of rivers and pollution, it has been observed a growing aquatic plants infestation in reservoirs for the generation of electricity. In addition to power generation, these sites have also been used for various other purposes, including recreation, attracting water and navigation. Thus it is important to evaluate these water bodies periodically, in order to verify the leading conditions to the growth of algae, plants and other organisms. In this sense, Remote sensing technology can be a valuable tool for mapping and monitoring the occupation of land in the vicinity of the water body and the optical properties of water, to provide subsidies for the effective management of these aquatic environments. This paper aims to perform the monitoring of the occurrence of aquatic plants in Salto Grande Hydropower Reservoir, located in Americana (SP) and, periodically, map the occupation of land in the vicinity of the water body, through multispectral images taken by sensors on the satellites Landsat series in seven consecutive years: 2004, 2005, 2006, 2007, 2008, 2009 and 2010. The adopted methodological procedure included the images data and the classification of multispectral images to map, every year, the location and extension of the area infested by aquatic plants and the occupation of land

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photodynamic Therapy (PDT) is a technique used to treat several types of lesions, such as cancer, microbial control, and esthetic dentistry cases. The performance of PDT involves the use of a photosensitizer (PS), which mainly will be located in cancer cells and is irradiated with visible light. This process, when it occurs in the presence of oxygen triggers the formation of reactive oxygen species that are cytotoxic to cells. These species cause cell death and subsequent tumor necrosis. The use of white light as a light source for multispectral Photodynamic Therapy and its consequences to the photodynamic effect is not yet completely established, and therefore there is interest in studying the parameters involved for analyzing the best conditions for applying treatment. The wavelength is crucial to improve the therapeutic effect, since both the optical properties of the biological tissue as the PS depend on these parameters. For FS studied in this work (Photogem®) are most often used wavelengths in the red region, due to their larger penetration depth in biological tissue. Thus, the light source becomes a fundamental aspect, their choice depends on the specific application and is based on the tumor location, light dose to be delivered and FS chosen. Despite all the advantages presented by lasers, the fact of having an emission spectrum essentially monochrome makes only one possible transition possible for the absorption of FS is used. Therefore, more extensive light sources such as light emitting diodes (LED), could be better used in some cases the laser, with the additional advantage of a reduced cost. Therefore, the choice of the white LED comes from an emission spectrum that still wider LED colors defined by allowing greater use of the several absorption bands and with varying depths of operation, according to the wavelength... (Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Society's change of parameters for health and aesthetics has resulted in an increased demand for dental treatments. Nowadays, ceramics systems have shown a substantial development, becoming more reliable and predictable. Dental ceramics, besides being chemically stable, present excellent optical properties when compared to dental structures, thus assuring a special position in the list of aesthetic restorative materials. OBJECTIVE, CASE REPORT AND CONCLUSION: This article describes a successful clinical procedure involving the anterior teeth aesthetics, which were restored with all-ceramic crowns (IPS e.max® Ivoclar Vivadent).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reestablishment of a harmonious smile through dental ceramics, when properly conducted and with specific indications, can achieve extremely predictable results. For aesthetic and functional rehabilitation, many ceramic materials can be used such as zirconia, leucite, alumina, feldspar, and lithium disilicate. Among these materials the lithium disilicate stands out due to the following characteristics: its resistance to wear, to chemical attack, high temperatures and oxidation; low electrical conductivity; near zero thermal expansion; good optical properties and biocompatibility with periodontal; excellent esthetics; color stability and reinforcement of tooth structure. The indications for the use of lithium disilicate are not limited to multiple facets of teeth in cases where there was no favorable response to tooth whitening, and also comprehend teeth with multiple restorations, diastema closure, shape alteration, and dental contouring, replacement of missing or fractured teeth, among others. The versatility of lithium disilicate ceramics allows its utilization in several clinical situations. The concomitant use of lithium disilicate for veneers and over metal has satisfactory aesthetic results, as reported in the present studying cases that require both aesthetics and resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blooms of phytoplankton can be a risk to human health and aquatic biota, so the adoption of monitoring methods of phytoplankton and mechanisms for preventing its occurrence are needed. Thus, traditional monitoring methods could be more effective if complemented by approaches using the optical properties of phytoplankton pigments by means of Remote Sensing. In order to evaluate the potential of multi-scale remote sensing for detection of the phytoplankton activity, a study area was selected in Nova Avanhandava reservoir, located in the Tiete River, SP. For this analysis, hyperspectral field data and multispectral images of low and medium spatial resolution (Modis and RapidEye) were acquired and were related to indicator limnological variables of phytoplankton behavior; chlorophyll a and phycocyanin. The results show that a specific spectral band of RapidEye system (690-730 nm) allowed detect chlorophyll a and to evaluate the phytoplankton biomass, however hyperspectral data are needed to detect the phycocyanin pigment, indicative of cyanobacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Sol-gel process has facilitated the processing of Organic-Inorganic Hybrid Materials with several scientific applications and technologies. The hybrid combine the advantages of the Sol-gel process with specific characteristics of organic polymers, allowing processing of thin films without fractures or fissures. The incorporation of azo dyes in polymer matrices has been widely used in the investigation of optical properties. The azo dye Disperse Red (DR1) presents optical alterations when exposed to visible or ultraviolet light. The alterations occur due to transitions of their isomers, trans and cis, caused by photoisomerization, due to electronic transitions of azo group (-N=N-), presenting photochromic and/or photorefractive effects. The hybrid system used in this work is the precursor 3- Glycidoxypropyl-Trimethoxi-silane (GPTS), the Tetraethylorthosilicate (TEOS) and DR1 as a dopant. The characterizations were performed using absorption spectroscopy UV-Vis which allowed the identification of the absorption bands and its variations when the samples were treated thermally and/or illuminated by ultraviolet light

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work shows the preparation and characterization of the new nanocomposites based on fibroin and biocellulose. Bacterial cellulose (BC) is an exopolysaccharide produced by bacteria of the genus Gluconacetobacter, which it has identical chemical structure of the cellulose from plants and it has gained attention in the field of research for its unique properties as excellent mechanical properties when dry and hydrated , higher capacity of water retention, moldability , biodegradability and excellent biological affinity . Silk fibroin (SF) is a structural protein present in the cocoon of the silkworm, Bombyx mori, has been identified as suitable for developing optical devices, tissue engineering application, enzyme immobilization, controlled release drug agent biopolymer. Silk fibroin/bacterial cellulose nanocomposite films were prepared impregnating different cellulose charges (0.5 %, 1.0 %, 1.5 %, 2.5 %, 5.0 % and 10.0 %) weight/weight. According mechanical tests and water and Paynes's cup permeability showed that SF/BC 1% nanocomposite has the most relevant results. Poliethylenoglicol (PEG) containing SF films improved optical and mechanical properties when compared to pristine SF film. New SF/BC nanocomposites could be applied in Medicine, as biodegradable packaging and flexible substrates for OLEDs.