899 resultados para Self-help devices for the disabled
Resumo:
The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.
Disability in the Caribbean. A study of four countries: a socio-demographic analysis of the disabled
Resumo:
Includes bibliography
Correspondence between the self-dual model and the topologically massive electrodynamics: A new view
Resumo:
Following the study of the Topologically Massive Theories under the Hamilton-Jacobi, we now analyze the constraint structure of the Self-Dual model as well as its correspondence with the Topologically Massive Electrodynamics. © 2013 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Positive selection (PS) in the thymus involves the presentation of self-peptides that are bound to MHC class II on the surface of cortical thymus epithelial cells (cTECs). Prss16 gene corresponds to one important element regulating the PS of CD4(+) T lymphocytes, which encodes Thymus-specific serine protease (Tssp), a cTEC serine-type peptidase involved in the proteolytic generation of self-peptides. Nevertheless, additional peptidase genes participating in the generation of self-peptides need to be found. Because of its role in the mechanism of PS and its expression in cTECs, the Prss16 gene might be used as a transcriptional marker to identify new genes that share the same expression profile and that encode peptidases in the thymus. To test this hypothesis, we compared the differential thymic expression of 4,500 mRNAs of wild-type (WT) C57BL/6 mice with their respective Prss16-knockout (KO) mutants by using microarrays. From these, 223 genes were differentially expressed, of which 115 had known molecular/biological functions. Four endopeptidase genes (Casp1, Casp2, Psmb3 and Tpp2) share the same expression profile as the Prss16 gene; i.e., induced in WT and repressed in KO while one endopeptidase gene, Capns1, features opposite expression profile. The Tpp2 gene is highlighted because it encodes a serine-type endopeptidase functionally similar to the Tssp enzyme. Profiling of the KO mice featured down-regulation of Prss16, as expected, along with the genes mentioned above. Considering that the Prss16-KO mice featured impaired PS, the shared regulation of the four endopeptidase genes suggested their participation in the mechanism of self-peptide generation and PS.
Resumo:
In a recent study we demonstrated the emergence of turbulence in a trapped Bose-Einstein condensate of Rb-87 atoms. An intriguing observation in such a system is the behavior of the turbulent cloud during free expansion. The aspect ratio of the cloud size does not change in the way one would expect for an ordinary non-rotating (vortex-free) condensate. Here we show that the anomalous expansion can be understood, at least qualitatively, in terms of the presence of vorticity distributed throughout the cloud, effectively counteracting the usual reversal of the aspect ratio seen in free time-of-flight expansion of non-rotating condensates.
Resumo:
As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.
Resumo:
This thesis discusses the design of a system to use wave energy to pump oxygen-rich surface water towards the bottom of the sea. A simple device, called OXYFLUX, is proposed in a scale model and tested in a wave flume in order to validate its supposed theoretical functioning. Once its effectiveness has been demonstrated, a overset mesh, CFD model has been developed and validated by means of the physical model results. Both numerical and physical results show how wave height affects the behavior of the device. Wave heights lower than about 0.5 m overtop the floater and fall into it. As the wave height increases, phase shift between water surface and vertical displacement of the device also increases its influence on the functioning mechanism. In these situations, with wave heights between 0.5 and 0.9 m, the downward flux is due to the higher head established in the water column inside the device respect to the outside wave field. Furthermore, as the wave height grows over 0.9 m, water flux inverts the direction thanks to depression caused by the wave crest pass over the floater. In this situation the wave crest goes over the float but does not go into it and it draws water from the bottom to the surface through the device pipe. By virtue of these results a new shape of the floater has been designed and tested in CFD model. Such new geometry is based on the already known Lazzari’s profile and it aims to grab as much water as possible from the wave crest during the emergence of the floater from the wave field. Results coming from the new device are compared with the first ones in order to identify differences between the two shapes and their possible areas of application.
Resumo:
Our aim in this study was to compare intermolar widths after alignment of crowded mandibular dental arches in nonextraction adolescent patients between conventional and self-ligating brackets.
Patient needs and expectations regarding development of self-help groups for rare pulmonary diseases