882 resultados para Seismic load, storey drift, lateral force, deflection, base shear


Relevância:

50.00% 50.00%

Publicador:

Resumo:

This work performs an extensive charterisation of precision targeted throwing in professional and recreational darts. The goal is to identify the contributing factors for lateral drift or throwing inaccuracy in the horizontal plane. A multitechnology approach is adopted whereby a custom built body area network of wireless inertial measurement devices monitor tilt, force and timing, an optical 3D motion capture system provides a complete kinematic model of the subject, electromyography sensors monitor muscle activation patterns and a force plate and pressure mat capture tactile pressure and force measurements. The study introduces the concept of constant throwing rhythm and highlights how landing errors in the horizontal plane can be attributable to a number of variations in arm force and speed, centre of gravity and the movements of some of the bodies non throw related extremities.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this investigation, the seismic torsional response of a multi-storey concentrically braced frame (CBF) plan irregular structure is evaluated numerically and experimentally through a series of hybrid tests. CBF structures have become popular in seismic design because they are one of the most efficient types of steel structures to resist earthquake loading. However, their response under plan irregular conditions has received little focus mostly in part
due to their complex behaviour under seismic loading conditions. The majority of research on the seismic response of plan irregular structures is based purely on numerical investigations. This paper provides much needed experimental investigation of the seismic response of a CBF plan irregular structure with the aim of characterising the response of this class of structure. The effectiveness of the Eurocode 8 torsional effects provision as a method of designing for
low levels of mass eccentricity is evaluated. Results indicate that some of the observations made by purely numerical models are valid in that; torsionally stiff structures perform well and the stiff side of the structure is subjected to a greater ductility demand compared to the flexible side of the structure. The Eurocode 8 torsional effects provision is shown to be adequate in terms of ductility and interstorey drift however the structure performs poorly
in terms of floor rotation. Importantly, stiffness eccentricity occurs when the provision is applied to the structure when no mass eccentricity exists and results in a significant increase in floor rotations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An approach for seismic damage identification of a single-storey steel concentrically braced frame (CBF) structure is presented through filtering and double integration of a recorded acceleration signal. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. The pre-processing achieves reliable numerical integration that predicts the displacement response accurately when compared to the measured lateral in-plane displacement of the CBF structure. The lateral displacement of the CBF structure is used to infer buckling and yielding of bracing members through seismic tests. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated displacement limits. The calculated buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify initial buckling and yielding in the bracing members.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new approach for global detection of seismic damage in a single-storey steel concentrically braced frame (CBF) structure is presented. The filtered lateral in-plane acceleration response of the CBF structure is integrated twice to provide the lateral in-plane displacement which is used to infer buckling and yielding damage. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated lateral in-plane displacement limits. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. This pre-processing results in reliable numerical integration of the frame acceleration that predicts the displacement response accurately when compared to the measured lateral displacement of the CBF structure. Importantly, the structural damage is not assumed through removal of bracing members, rather damage is induced through actual seismic loading. The buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify the initiation of buckling and yielding.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A análise dos efeitos dos sismos mostra que a investigação em engenharia sísmica deve dar especial atenção à avaliação da vulnerabilidade das construções existentes, frequentemente desprovidas de adequada resistência sísmica tal como acontece em edifícios de betão armado (BA) de muitas cidades em países do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistência sísmica dos edifícios, deve ser dada especial atenção à sua resposta sob ações cíclicas. Acresce que o sismo é um tipo de ação cujos efeitos nos edifícios exige a consideração de duas componentes horizontais, o que tem exigências mais severas nos pilares comparativamente à ação unidirecional. Assim, esta tese centra-se na avaliação da resposta estrutural de pilares de betão armado sujeitos a ações cíclicas horizontais biaxiais, em três linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento cíclico uniaxial e biaxial de pilares de betão armado com esforço axial constante. Para tal foram construídas quatro séries de pilares retangulares de betão armado (24 no total) com diferentes características geométricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes histórias de carga. Os resultados experimentais obtidos são analisados e discutidos dando particular atenção à evolução do dano, à degradação de rigidez e resistência com o aumento das exigências de deformação, à energia dissipada, ao amortecimento viscoso equivalente; por fim é proposto um índice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estratégias de modelação não-linear para a representação do comportamento biaxial dos pilares ensaiados, considerando não-linearidade distribuída ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as várias estratégias de modelação demonstraram representar adequadamente a resposta em termos das curvas envolventes força-deslocamento, mas foram encontradas algumas dificuldades na representação da degradação de resistência e na evolução da energia dissipada. Por fim, é proposto um modelo global para a representação do comportamento não-linear em flexão de elementos de betão armado sujeitos a ações biaxiais cíclicas. Este modelo tem por base um modelo uniaxial conhecido, combinado com uma função de interação desenvolvida com base no modelo de Bouc- Wen. Esta função de interação foi calibrada com recurso a técnicas de otimização e usando resultados de uma série de análises numéricas com um modelo refinado. É ainda demonstrada a capacidade do modelo simplificado em reproduzir os resultados experimentais de ensaios biaxiais de pilares.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Objective: This study evaluated the variations in the anterior cranial base (S-N), posterior cranial base (S-Ba) and deflection of the cranial base (SNBa) among three different facial patterns (Pattern I, II and III). Method: A sample of 60 lateral cephalometric radiographs of Brazilian Caucasian patients, both genders, between 8 and 17 years of age was selected. The sample was divided into 3 groups (Pattern I, II and III) of 20 individuals each. The inclusion criteria for each group were the ANB angle, Wits appraisal and the facial profile angle (G’.Sn.Pg’). To compare the mean values obtained from (SNBa, S-N, S-Ba) each group measures, the ANOVA test and Scheffé’s Post-Hoc test were applied. Results and Conclusions: There was no statistically significant difference for the deflection angle of the cranial base among the different facial patterns (Patterns I, II and III). There was no significant difference for the measures of the anterior and posterior cranial base between the facial Patterns I and II. The mean values for S-Ba were lower in facial Pattern III with statistically significant difference. The mean values of S-N in the facial Pattern III were also reduced, but without showing statistically significant difference. This trend of lower values in the cranial base measurements would explain the maxillary deficiency and/or mandibular prognathism features that characterize the facial Pattern III.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Integral Masonry System consisting of intersecting steel trusses alo ng each of the three dimensional directions of space on walls and slabs using any masonry material, had yet been backed up by the previous adobe test for seismic areas. This paper presents the comparison this last test and the adaptation of the IMS using h ollow brick. A prototype based on a two storey model house (6mx6mx6m) has being also built in two different scales in order to maximize the load and size of the shake table: the first one half size the whole building (3mx3mx3m) and the second, a quarter of the real size (3mx3mx6m). Both tests have suffered some mild to moderate damages while supporting the higher seismic action subjected by the shake table, without even fissuring the first test and with very few damages the second one. The thickness of the hollow brick wall and the diameter of the tree - dimensional truss reinforcement were scaled to the real size test in order to ascertain its great structural behaviour in relation to the previous structural model calculations. The aim of this study is to sum marize the results of the research collaboration between the ETSAM - UPM and the PUCP in whose laboratory these tests were carried out.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of high-rise building is more often dictated by its serviceability rather than strength. Structural Engineers are always striving to overcome challenges of controlling lateral deflection and storey drifts as well as self weight of structure imposed on foundation. One of the most effective techniques is the use of outrigger and belt truss system in Composite structures that can astutely solve the above two issues in High-rise constructions. This paper investigates deflection control by effective utilisation of belt truss and outrigger system on a 60-storey composite building subjected to wind loads. A three dimensional Finite Element Analysis is performed with one, two and three outrigger levels. The reductions in deflection are 34 percent, 42 percent and 51 percent respectively as compared to a model without any outrigger system. There is an appreciable decline in the storey drifts with the introduction of these stiffer arrangements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Constructing buildings using slip formed load bearing wall panels is becoming increasingly popular in Sri Lanka due to several advantages; low cost, environmental friendliness and rapid construction technique. These wall panels are already successfully implemented in many low rise buildings. However, the seismic capacities of these buildings have not been properly studied. Few seismic activities reported in Sri Lanka have not caused severe structural damage, but predictions can not be made as to whether this will continue to be the case in the future. This highlights the need to study the seismic capacity of buildings constructed in slip formed load bearing wall panels. This paper presents a study of the seismic capacity of the existing medium rise building.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Partially grouted wider reinforced masonry wall, built predominantly with the use of face shell bedded hollow concrete blocks, is adopted extensively in the cyclonic areas due to its economy. Its out-of-plane response to lateral pressure loading is well definied; however its in-plane shear behaviour is less well understood, in particular it is unclear how the grouted reinforced cores affect the load paths within the wall. For the rational design of the walls, clarification is sought as to whether the wall acts as a composite of unreinforced panels surrounded by the reinforced cores or simply as a continuum embedded with reinforcement at wider spacing. This paper reports four full scale walls tested under in-place cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteretic curves as well as the local responses of some critical zones of the shear walls are presented. It is shown that the aspect ratio of the unreinforced masonry panels surrounded by the reinforced grouted cores within the shear walls have profound effect in ascertaining the behaviour of the shear walls.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The responses of composite buildings under wind loads clearly become more critical as the building becomes taller, less stiff and more lightweight. When the composite building increases in height, the stiffness of the structure becomes more important factor and introduction to belt truss and outrigger system is often used to provide sufficient lateral stiffness to the structure. Most of the research works to date is limited to reinforced concrete building with outrigger system of concrete structure, simple building plan layout, single height of a building, one direction wind and single level of outrigger arrangement. There is a scarcity in research works about the effective position of outrigger level on composite buildings under lateral wind loadings when the building plan layout, height and outrigger arrangement are varied. The aim of this paper is to determine the optimum location of steel belt and outrigger systems by using different arrangement of single and double level outrigger for different size, shape and height of composite building. In this study a comprehensive finite element modelling of composite building prototypes is carried out, with three different layouts (Rectangular, Octagonal and L shaped) and for three different storey (28, 42 and 57-storey). Models are analysed for dynamic cyclonic wind loads with various combination of steel belt and outrigger bracings. It is concluded that the effectiveness of the single and double level steel belt and outrigger bracing are varied based on their positions for different size, shape and height of composite building.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper two nonlinear model based control algorithms have been developed to monitor the magnetorheological (MR) damper voltage. The main advantage of the proposed algorithms is that it is possible to directly monitor the voltage required to control the structural vibration considering the effect of the supplied and commanded voltage dynamics of the damper. The efficiency of the proposed techniques has been shown and compared taking an example of a base isolated three-storey building under a set of seismic excitations. Comparison of the performances with a fuzzy based intelligent control algorithm and a widely used clipped optimal strategy has also been shown.