928 resultados para Secondary Structure Prediction


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis C virus (HCV), exhibits considerable genetic diversity, but presents a relatively well conserved 5 ` noncoding region (5 ` NCR) among all genotypes. In this study, the structural features and translational efficiency of the HCV 5 ` NCR sequences were analyzed using the programs RNAfold, RNAshapes and RNApdist and with a bicistronic dual luciferase expression system, respectively. RNA structure prediction software indicated that base substitutions will alter potentially the 5 ` NCR structure. The heterogeneous sequence observed on 5 ` NCR led to important changes in their translation efficiency in different cell culture lines. Interactions of the viral RNA with cellular transacting factors may vary according to the cell type and viral genome polymorphisms that may result in the translational efficiency observed. J. Med. Virol. 81: 1212-1219, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glycine-rich proteins (GRP), serve a variety of biological functions. Acanthoscurrin is an antimicrobial GRP isolated front hemocytes-of the Brazilian spider Acanthoscurria gomesiana. Aiming to contribute to the knowledge of the secondary structure and stepwise solid-phase synthesis of GRPs` glycine-rich domains, we attempted to prepare G(101)GGLGGGRGGGYG(113) GGGGYGGGYG(123)GGy(126)GGGKYK(132)-NH(2), acanthoscurrin C-terminal amidated fragment. Although a theoretical prediction did not indicate high aggregation potential for this peptide, repetitive incomplete aminoacylations were observed after incorporating Tyr(126) to the growing peptide-MBHA resin (Boc chemistry) at 60 degrees C. The problem was not solved by varying the coupling reagents or solvents, adding chaotropic salts to the reaction media or changing the resin/chemistry (Rink amide resin/Fmoc chemistry). Some improvement was mode when CLEAR amide resin (Fmoc chemistry) was 32 used, as it allowed for obtaining fragment (G(113)-K(132) NIR-FT-Raman spectra collected for samples of the growing peptide-MBHA, -Rink amide resin and -CLEAR amide resin revealed the presence of beta-sheet structures. Only the combination of CLEAR-amide resin, 60 degrees C, Fmoc-(Fmoc-Hmb)Gly-OH and LiCl (the last two used alternately) was able to inhibit the phenomenon, as proven by NIR-FT-Raman analysis of the growing peptide-resin, allowing the total synthesis of desired 132 fragment Gly(101)-K(132). In summary, this work describes a new difficult sequence, contributes to understanding stepwise solid-phase synthesis of this type of peptide and shows that, at least while protected and linked to a resin, this GRPs glycine-rich motif presents all early tendency to assume beta-sheet structures. (c) 2008 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 65-75, 2009.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, genetic algorithms concepts along with a rotamer library for proteins side chains and implicit solvation potential are used to optimize the tertiary structure of peptides. We starting from the known PDB structure of its backbone which is kept fixed while the side chains allowed adopting the conformations present in the rotamer library. It was used rotamer library independent of backbone and a implicit solvation potential. The structure of Mastoporan-X was predicted using several force fields with a growing complexity; we started it with a field where the only present interaction was Lennard-Jones. We added the Coulombian term and we considered the solvation effects through a term proportional to the solvent accessible area. This paper present good and interesting results obtained using the potential with solvation term and rotamer library. Hence, the algorithm (called YODA) presented here can be a good tool to the prediction problem. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, genetic algorithms concepts along with a rotamer library dependent of backbone and implicit solvation potential are used to study the tertiary structure of peptides. We starting from known primary sequence and optimize the structure of the backbone while the side chains allowed adopting the conformations present in a rotamer library. The GA, implemented with two force fields with a growing complexity, was used predict the structure of a polyalanine and a poly-isolueucine. This paper presents good and interesting results about the study of peptides structures and about the development of computational tools to study peptides structures. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a coiled coil structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus. © 2013 Springer-Verlag Wien.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)