903 resultados para Search and retrieval
Resumo:
Includes bibliographical references.
Resumo:
With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.
Resumo:
The technology of record, storage and processing of the texts, based on creation of integer index cycles is discussed. Algorithms of exact-match search and search similar on the basis of inquiry in a natural language are considered. The software realizing offered approaches is described, and examples of the electronic archives possessing properties of intellectual search are resulted.
Resumo:
The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
It is well known that color coding facilitates search and iden- tification in real-life tasks. The aim of this work was to compare reac- tion times for normal color and dichromatic observers in a visual search experiment. A unique distracter color was used to avoid abnormal color vision vulnerability to background complexity. Reaction times for nor- mal color observers and dichromats were estimated for 2◦ central vision at 48 directions around a white point in CIE L∗a∗b∗ color space for systematic examination on the mechanisms of dichromatic color percep- tion. The results show that mean search times for dichromats were twice larger compared to the normal color observers and for all directions. The difference between the copunctual confusion lines and the confusion direction measure experimentally was 5.5◦ for protanopes and 7.5◦ for deuteranopes.
Resumo:
Forest fires are a serious threat to humans and nature from an ecological, social and economic point of view. Predicting their behaviour by simulation still delivers unreliable results and remains a challenging task. Latest approaches try to calibrate input variables, often tainted with imprecision, using optimisation techniques like Genetic Algorithms. To converge faster towards fitter solutions, the GA is guided with knowledge obtained from historical or synthetical fires. We developed a robust and efficient knowledge storage and retrieval method. Nearest neighbour search is applied to find the fire configuration from knowledge base most similar to the current configuration. Therefore, a distance measure was elaborated and implemented in several ways. Experiments show the performance of the different implementations regarding occupied storage and retrieval time with overly satisfactory results.
Resumo:
Internet is increasingly used as a source of information on health issues and is probably a major source of patients' empowerment. This process is however limited by the frequently poor quality of web-based health information designed for consumers. A better diffusion of information about criteria defining the quality of the content of websites, and about useful methods designed for searching such needed information, could be particularly useful to patients and their relatives. A brief, six-items DISCERN version, characterized by a high specificity for detecting websites with good or very good content quality was recently developed. This tool could facilitate the identification of high-quality information on the web by patients and may improve the empowerment process initiated by the development of the health-related web.
Resumo:
Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.
Resumo:
The artificial grammar (AG) learning literature (see, e.g., Mathews et al., 1989; Reber, 1967) has relied heavily on a single measure of implicitly acquired knowledge. Recent work comparing this measure (string classification) with a more indirect measure in which participants make liking ratings of novel stimuli (e.g., Manza & Bornstein, 1995; Newell & Bright, 2001) has shown that string classification (which we argue can be thought of as an explicit, rather than an implicit, measure of memory) gives rise to more explicit knowledge of the grammatical structure in learning strings and is more resilient to changes in surface features and processing between encoding and retrieval. We report data from two experiments that extend these findings. In Experiment 1, we showed that a divided attention manipulation (at retrieval) interfered with explicit retrieval of AG knowledge but did not interfere with implicit retrieval. In Experiment 2, we showed that forcing participants to respond within a very tight deadline resulted in the same asymmetric interference pattern between the tasks. In both experiments, we also showed that the type of information being retrieved influenced whether interference was observed. The results are discussed in terms of the relatively automatic nature of implicit retrieval and also with respect to the differences between analytic and nonanalytic processing (Whittlesea Price, 2001).
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
Trading commercial real estate involves a process of exchange that is costly and which occurs over an extended and uncertain period of time. This has consequences for the performance and risk of real estate investments. Most research on transaction times has occurred for residential rather than commercial real estate. We study the time taken to transact commercial real estate assets in the UK using a sample of 578 transactions over the period 2004 to 2013. We measure average time to transact from a buyer and seller perspective, distinguishing the search and due diligence phases of the process, and we conduct econometric analysis to explain variation in due diligence times between assets. The median time for purchase of real estate from introduction to completion was 104 days and the median time for sale from marketing to completion was 135 days. There is considerable variation around these times and results suggest that some of this variation is related to market state, type and quality of asset, and type of participants involved in the transaction. Our findings shed light on the drivers of liquidity at an individual asset level and can inform models that quantify the impact of uncertain time on market on real estate investment risk.
Resumo:
Em modelos de competição de preços, somente um custo de procura positivo por parte do consumidor não gera equilíbrio com dispersão de preços. Já modelos dinâmicos de switching cost consistentemente geram este fenômeno bastante documentado para preços no varejo. Embora ambas as literaturas sejam vastas, poucos modelos tentaram combinar as duas fricções em um só modelo. Este trabalho apresenta um modelo dinâmico de competição de preços em que consumidores idênticos enfrentam custos de procura e de switching. O equilíbrio gera dispersão nos preços. Ainda, como os consumidores são obrigados a se comprometer com uma amostra fixa de firmas antes dos preços serem definidos, somente dois preços serão considerados antes de cada compra. Este resultado independe do tamanho do custo de procura individual do consumidor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)