990 resultados para Sea urchins.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

v.46:no.1 (1914)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cover-title.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inaug.--diss.--Freiburg im Breisgau.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Sonderdruck aus den Verhandlungen der Physikal.-medicin. Gesellschaft zu Würzburg, n. F., XXIX. Band."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At head of title: Contributions to the biology of the Phillippine archipelago and adjacent regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral reefs face unprecedented threats throughout most of their range. Poorly planned coastal development has contributed increased nutrients and sewage contamination to coastal waters, smothering some corals and contributing to overgrowth by macroalgae. My approach to assessing the degree to which coral reef ecosystems have been influenced by terrestrial and anthropogenic organic carbon inputs is through the use of carbon (C) and nitrogen (N) stable isotopes and lipid biomarkers in a marine protected area, the Coral Reef System of Veracruz: Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) in the southwest Gulf of Mexico. Firstly, I used a C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor to reveal the primary producer sources that fuel the coral reef food web. Secondly, I used lipid classes, FA and sterol biomarkers to determine production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, I used coprostanol to determine pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential metabolite FA for marine fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while seagrass non-essential FA are transferred to the entire food web mainly in the rainy season. Sea urchins may be the main consumers of brown macroalgae, especially in the dry season, while surgeon fish prefer red algae in both dry and rainy seasons. C and N isotopic values and the ratio C:N suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and seagrass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly in the rainy season. The nearest river to the PNSAV was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. I would suggest monitoring δ¹⁵N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the PNSAV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extensive use of fossil fuels is leading to increasing CO2 concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO2. As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO2 41 Pa e.g. 399 µatm) and CO2 acidified seawater with pH of 7.7 (pCO2 134 Pa e.g. 1318 µatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10 % reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (Two way ANOSIM: Global R = 1) while acidification effects were less pronounced (Global R = 0.518). Significant differences in gene expression patterns (ANOSIM R = 0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO2 treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO2 effect. We found an up regulation of metabolic genes (between 10 to 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23 and 36% in msp130, SM30B, SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na+/K+-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased carbon dioxide (CO2) concentration in the atmosphere will change the balance of the components of carbonate chemistry and reduce the pH at the ocean surface. Here, we report the effects of increased CO2 concentration on the early development of the sea urchins Hemicentrotus pulcherrimus and Echinometra mathaei. We examined the fertilization, early cleavage, and pluteus larval stage to evaluate the impact of elevated CO2 concentration on fertilization rate, cleavage rate, developmental speed, and pluteus larval morphology. Furthermore, we compared the effects of CO2 and HCl at the same pH in an attempt to elucidate any differences between the two. We found that fertilization rate, cleavage rate, developmental speed, and pluteus larval size all tended to decrease with increasing CO2 concentration. Furthermore, CO2-seawater had a more severe effect than HCl-seawater on the fertilization rate. By contrast, the effects on cleavage rate, developmental speed, and pluteus larval morphology were similar for CO2- and HCl-seawater. Our results suggest that both decreased pH and altered carbonate chemistry affect the early development and life history of marine animals, implying that increased seawater CO2 concentration will seriously alter marine ecosystems. The effects of CO2 itself on marine organisms therefore requires further clarification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea urchins are common benthic organisms on coastal ecosystems of tropical and temperate shallow waters. The impact of sea urchins populations in shore communities is density-dependent, and therefore, knowledge of the life history of these animals is important to understand these interactions. Between 2000 and 2005 a population boom of Tripneustes ventricosus was observed in the Fernando de Noronha Archipelago. In 2004 a research program was started to monitor the population dynamics of T. ventricosus in the archipelago, when it noted a lack of basic information on the biology and reproduction of this species, despite its broad geographic distribution and economic importance in parts of its occurrence. In this context, this work focuses on the reproductive biology of T. ventricosus with emphasis on the description of the gametogenic stages. Between December 2006 and July 2007, ten urchins were collected by snorkeling in two sites of the archipelago, totaling 120 individuals. Gametogenic stages were described for both sexes through microscopic analysis, and were defined as: Recovery, Growing, Premature, Mature and Spawning. Results showed increasing in Gonad index throughout of months of sampling and suggest that the reproductive cycle of the species in the archipelago is annual

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea urchins are benthic macroinvertebrates that inhabit shallow coastal waters in tropical and temperate zones. Urchins are usually classified as generalists or omnivores as they can adjust their diet according to the food resources available in the environment. Due to the strong grazing pressure they may exert, urchins have an important role in marine ecosystems, occupying different trophic levels and stimulating the intensification of the dynamics of communities where they occur. In 2004, a monitoring program focused on the population dynamics of the white sea urchin, Tripneustes ventricosus, has been initiated in the Fernando de Noronha Archipelago. At the same time, a surprisingly lack of information on the species biology has been noted, despite their wide geographical distribution and economic importance in many parts of its range. Hence, this work was developed to provide information on the feeding habits of T. ventricosus in the archipelago. Ten specimens were collected between December 2006 and July 2007 at two sites of the archipelago, Air France and Sueste Bay for biometrics and analysis of gut contents. Test diameters ranged from 9.19 cm (± 1.1) to 10.08 cm (± 0.58). Calculated stomach repletion index (IRE) was higher (p <0.05) in the Air France site and also during January and July. The IRE was not correlated to the gonad index. Fifteen different species of algae were detected in a total of 120 stomachs examined: 4 Chlorophytas, 4 Phaeophytas and 6 Rhodophytas. Food diversity (p <0.05) was higher in December 2006 and January 2007. Although several items had a high frequency of occurrence, they were low represented in terms of weight, and consequently, had a low level of relative importance. The brown algae Dictyopteris spp and Dictyota spp, followed by the green algae Caulerpa verticillata accounted for the greatest importance in T. ventricosus diet, comprising about 90% of the consumed items

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developmental gene regulatory networks (dGRNs) are assemblages of regulatory genes that direct embryonic development of animal body plans and their morpho-logical structures. dGRNs exhibit recursively-wired circuitry that is encoded in the genome and executed during development. Alteration to the regulatory architecture of dGRNs causes variation in developmental programs both during the development of an individual organism and during the evolution of an individual lineage. The ex-planatory power of these networks is best exemplified by the global dGRN directing early development of the euechinoid sea urchin Strongylocentrotus purpuratus. This network consists of numerous regulatory genes engaging in hundreds of genomic regulatory transactions that collectively direct the delineation of early embryonic domains and the specification of cell lineages. Research on closely-related euechi-noid sea urchins, e.g. Lytechinus variegatus and Paracentrotus lividus, has revealed marked conservation of dGRN architecture in echinoid development, suggesting little appreciable alteration has occurred since their divergence in evolution at least 90 million years ago (mya).

We sought to test whether this observation extends to all sea urchins (echinoids) and undertook a systematic analysis of over 50 regulatory genes in the cidaroid sea urchin Eucidaris tribuloides, surveing their regulatory activity and function in a sea urchin that diverged from euechinoid sea urchins at least 268 mya. Our results revealed extensive alterations have occurred to all levels of echinoid dGRN archi-tecture since the cidaroid-euechinoid divergence. Alterations to mesodermal sub-circuits were particularly striking, including functional di˙erences in specification of non-skeletogenic mesenchyme (NSM), skeletogenic mesenchyme (SM), and en-domesodermal segregation. Specification of endomesodermal embryonic domains revealed that, while their underlying network circuitry had clearly diverged, regu-latory states established in pregastrular embryos of these two groups are strikingly similar. Analyses of E. tribuloides specification leading to the estab-lishment of dorsal-ventral (aboral-oral) larval polarity indicated that regulation of regulatory genes expressed in mesodermal embryonic domains had incurred significantly more alterations than those expressed in endodermal and ectodermal domains. Taken together, this study highlights the ability of dGRN architecture to buffer extensive alterations in the evolution and early development of echinoids and adds further support to the notion that alterations can occur at all levels of dGRN architecture and all stages of embryonic development.