714 resultados para Screw
Resumo:
A unique case of a collegiate athlete who suffered an anterior cruciate ligament injury leading to the formation of a synovial cyst is described. The cyst, localized over the tibial tunnel, resulted from irritation caused by the removal of interference screws.
Experimental Modeling of Twin-Screw Extrusion Processes to Predict Properties of Extruded Composites
Resumo:
Twin-screw extrusion is used to compound fillers into a polymer matrix in order to improve the properties of the final product. The resultant properties of the composite are determined by the operating conditions used during extrusion processing. Changes in the operating conditions affect the physics of the melt flow, inducing unique composite properties. In the following work, the Residence Stress Distribution methodology has been applied to model both the stress behavior and the property response of a twin-screw compounding process as a function of the operating conditions. The compounding of a pigment into a polymer melt has been investigated to determine the effect of stress on the degree of mixing, which will affect the properties of the composite. In addition, the pharmaceutical properties resulting from the compounding of an active pharmaceutical ingredient are modeled as a function of the operating conditions, indicating the physical behavior inducing the property responses.
Resumo:
Congenital vertebral malformations are common in brachycephalic “screw-tailed” dog breeds such as French bulldogs, English bulldogs, Boston terriers, and Pugs. Those vertebral malformations disrupt the normal vertebral column anatomy and biomechanics, potentially leading to deformity of the vertebral column and subsequent neurological dysfunction. The initial aim of this work was to study and determine whether the congenital vertebral malformations identified in those breeds could be translated in a radiographic classification scheme used in humans to give an improved classification, with clear and well-defined terminology, with the expectation that this would facilitate future study and clinical management in the veterinary field. Therefore, two observers who were blinded to the neurologic status of the dogs classified each vertebral malformation based on the human classification scheme of McMaster and were able to translate them successfully into a new classification scheme for veterinary use. The following aim was to assess the nature and the impact of vertebral column deformity engendered by those congenital vertebral malformations in the target breeds. As no gold standard exists in veterinary medicine for the calculation of the degree of deformity, it was elected to adapt the human equivalent, termed the Cobb angle, as a potential standard reference tool for use in veterinary practice. For the validation of the Cobb angle measurement method, a computerised semi-automatic technique was used and assessed by multiple independent observers. They observed not only that Kyphosis was the most common vertebral column deformity but also that patients with such deformity were found to be more likely to suffer from neurological deficits, more especially if their Cobb angle was above 35 degrees.
Resumo:
A prospective, consecutive series of 106 patients receiving endoscopic anterior scoliosis correction. The aim was to analyse changes in radiographic parameters and rib hump in the two years following surgery. Endoscopic anterior scoliosis correction is a level sparing approach, therefore it is important to assess the amount of decompensation which occurs after surgery. All patients received a single anterior rod and vertebral body screws using a standard compression technique. Cleared disc spaces were packed with either mulched femoral head allograft or rib head/iliac crest autograft. Radiographic parameters (major, instrumented, minor Cobb, T5-T12 kyphosis) and rib hump were measured at 2,6,12 and 24 months after surgery. Paired t-tests and Wilcoxon signed ranks tests were used to assess the statistical significant of changes between adjacent time intervals.----- Results: Mean loss of major curve correction from 2 to 24 months after surgery was 4 degrees. Mean loss of rib hump correction was 1.4 degrees. Mean sagittal kyphosis increased from 27 degrees at 2 months to 30.6 degrees at 24 months. Rod fractures and screw-related complications resulted in several degrees less correction than patients without complications, but overall there was no clinically significant decompensation following complications. The study concluded that there are small changes in deformity measures after endoscopic anterior scoliosis surgery, which are statistically significant but not clinically significant.
Resumo:
Top screw pullout occurs when the screw is under too much axial force to remain secure in the vertebral body. In vitro biomechanical pullout tests are commonly done to find the maximum fixation strength of anterior vertebral body screws. Typically, pullout tests are done instantaneously where the screw is inserted and then pulled out immediately after insertion. However, bone is a viscoelastic material so it shows a time dependent stress and strain response. Because of this property, it was hypothesised that creep occurs in the vertebral trabecular bone due to the stress caused by the screw. The objective of this study was therefore to determine whether the axial pullout strength of anterior vertebral body screws used for scoliosis correction surgery changes with time after insertion. This study found that there is a possible relationship between pullout strength and time; however more testing is required as the sample numbers were quite small. The design of the screw is made with the knowledge of the strength it must obtain. This is important to prevent such occurrences as top screw pullout. If the pullout strength is indeed decreased due to creep, the design of the screw may need to be changed to withstand greater forces.
Resumo:
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.
Resumo:
A laboratory scale twin screw extruder has been interfaced with a near infrared (NIR) spectrometer via a fibre optic link so that NIR spectra can be collected continuously during the small scale experimental melt state processing of polymeric materials. This system can be used to investigate melt state processes such as reactive extrusion, in real time, in order to explore the kinetics and mechanism of the reaction. A further advantage of the system is that it has the capability to measure apparent viscosity simultaneously which gives important additional information about molecular weight changes and polymer degradation during processing. The system was used to study the melt processing of a nanocomposite consisting of a thermoplastic polyurethane and an organically modified layered silicate.
Resumo:
Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Adequate design provisions are not available for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener holes, numerical studies have not been able to determine the pull-through failure loads. Numerical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding and small scale tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical central support screw fastener holes were measured until the pull-through failure occurred. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failures in crest-fixed steel claddings.
Resumo:
Prospective clinical case series of 100 patients receiving thoracoscopic anterior scoliosis correction surgery. The objective was to evaluate the relationship between clinical outcomes of thoracoscopic anterior scoliosis surgery and deformity correction using the Scoliosis Research Society (SRS) outcomes instrument questionnaire. The surgical treatment of scoliosis is quantitatively assessed in the clinic using radiographic measures of deformity correction, as well as the rib hump, but it is important to understand the extent to which these quantitative measures correlate with self-reported improvements in patients’ quality of life following surgery. A series of 100 consecutive adolescent idiopathic scoliosis patients received a single anterior rod via a thoracoscopic approach at the Mater Children’s Hospital, Brisbane, Australia. Patients completed SRS outcomes questionnaires pre-operatively and at 24 months post-operatively. There were 94 females and 6 males with a mean age of 16.1 years. The mean Cobb angle improved from 52º pre-operatively to 25º post-operatively (52%) and the mean rib hump improved from 16º to 8º (51%). The mean total SRS score for the cohort was 99.4/120. None of the deformity related parameters in the multiple regression were significant. However, patients with the lowest post-operative major Cobb angles reported significantly higher SRS scores than those with the highest post-operative Cobb angles, but there was no difference on the basis of rib hump correction. There were no significant differences between patients with either rod fractures or screw-related complications compared to those without complications.
Resumo:
Introduction. Surgical treatment of scoliosis is assessed in the spine clinic by the surgeon making numerous measurements on X-Rays as well as the rib hump. But it is important to understand which of these measures correlate with self-reported improvements in patients’ quality of life following surgery. The objective of this study was to examine the relationship between patient satisfaction after thoracoscopic (keyhole) anterior scoliosis surgery and standard deformity correction measures using the Scoliosis Research Society (SRS) adolescent questionnaire. Methods. A series of 100 consecutive adolescent idiopathic scoliosis patients received a single anterior rod via a keyhole approach at the Mater Children’s Hospital, Brisbane. Patients completed SRS outcomes questionnaires before surgery and again at 24 months after surgery. Multiple regression and t-tests were used to investigate the relationship between SRS scores and deformity correction achieved after surgery. Results. There were 94 females and 6 males with a mean age of 16.1 years. The mean Cobb angle improved from 52º pre-operatively to 21º for the instrumented levels post-operatively (59% correction) and the mean rib hump improved from 16º to 8º (51% correction). The mean total SRS score for the cohort was 99.4/120 which indicated a high level of satisfaction with the results of their scoliosis surgery. None of the deformity related parameters in the multiple regressions were significant. However, the twenty patients with the smallest Cobb angles after surgery reported significantly higher SRS scores than the twenty patients with the largest Cobb angles after surgery, but there was no difference on the basis of rib hump correction. Discussion. Patients undergoing thoracoscopic (keyhole) anterior scoliosis correction report good SRS scores which are comparable to those in previous studies. We suggest that the absence of any statistically significant difference in SRS scores between patients with and without rod or screw complications is because these complications are not associated with any clinically significant loss of correction in our patient group. The Cobb angle after surgery was the only significant predictor of patient satisfaction when comparing subgroups of patients with the largest and smallest Cobb angles after surgery.
Resumo:
Experiments were undertaken to study effect of initial conditions on the expansion ratio of two grains in a laboratory scale, single speed, single screw extruder at Naresuan University, Thailand. Jasmine rice and Mung bean were used as the material. Three different initial moisture contents were adjusted for the grains and classified them into three groups according to particle sizes. Mesh sizes used are 12 and 14. Expansion ratio was measured at a constant barrel temperature of 190oC. Response surface methodology was used to obtain optimum conditions between moisture content and particle size of the materials concerned.
Resumo:
Fractures of long bones are sometimes treated using various types of fracture fixation devices including internal plate fixators. These are specialised plates which are used to bridge the fracture gap(s) whilst anatomically aligning the bone fragments. The plate is secured in position by screws. The aim of such a device is to support and promote the natural healing of the bone. When using an internal fixation device, it is necessary for the clinician to decide upon many parameters, for example, the type of plate and where to position it; how many and where to position the screws. While there have been a number of experimental and computational studies conducted regarding the configuration of screws in the literature, there is still inadequate information available concerning the influence of screw configuration on fracture healing. Because screw configuration influences the amount of flexibility at the area of fracture, it has a direct influence on the fracture healing process. Therefore, it is important that the chosen screw configuration does not inhibit the healing process. In addition to the impact on the fracture healing process, screw configuration plays an important role in the distribution of stresses in the plate due to the applied loads. A plate that experiences high stresses is prone to early failure. Hence, the screw configuration used should not encourage the occurrence of high stresses. This project develops a computational program in Fortran programming language to perform mathematical optimisation to determine the screw configuration of an internal fixation device within constraints of interfragmentary movement by minimising the corresponding stress in the plate. Thus, the optimal solution suggests the positioning and number of screws which satisfies the predefined constraints of interfragmentary movements. For a set of screw configurations the interfragmentary displacement and the stress occurring in the plate were calculated by the Finite Element Method. The screw configurations were iteratively changed and each time the corresponding interfragmentary displacements were compared with predefined constraints. Additionally, the corresponding stress was compared with the previously calculated stress value to determine if there was a reduction. These processes were continued until an optimal solution was achieved. The optimisation program has been shown to successfully predict the optimal screw configuration in two cases. The first case was a simplified bone construct whereby the screw configuration solution was comparable with those recommended in biomechanical literature. The second case was a femoral construct, of which the resultant screw configuration was shown to be similar to those used in clinical cases. The optimisation method and programming developed in this study has shown that it has potential to be used for further investigations with the improvement of optimisation criteria and the efficiency of the program.
Resumo:
When crest-fixed thin trapezoidal steel cladding with closely spaced ribs is subjected to wind uplift/suction forces, local dimpling or pull-through failures occur prematurely at their screw connections because of the large stress concentrations in the cladding under the screw heads. Currently, the design of crest-fixed profiled steel cladding is mainly based on time consuming and expensive laboratory tests due to the lack of adequate design rules. In this research, a shell finite element model of crest-fixed trapezoidal steel cladding with closely spaced ribs was developed and validated using experimental results. The finite element model included a recently developed splitting criterion and other advanced features including geometric imperfections, buckling effects, contact modelling and hyperelastic behaviour of neoprene washers, and was used in a detailed parametric study to develop suitable design formulae for local failures. This paper presents the details of the finite element analyses, large scale experiments and their results including the new wind uplift design strength formulae for trapezoidal steel cladding with closely spaced ribs. The new design formulae can be used to achieve both safe and optimised solutions.
Resumo:
This study demonstrates the feasibility of additive manufactured poly(3-caprolactone)/silanized tricalcium phosphate (PCL/TCP(Si)) scaffolds coated with carbonated hydroxyapatite (CHA)-gelatin composite for bone tissue engineering. In order to reinforce PCL/TCP scaffolds to match the mechanical properties of cancellous bone, TCP has been modified with 3-glycidoxypropyl trimethoxysilane (GPTMS) and incorporated into PCL to synthesize a PCL/TCP(Si) composite. The successful modification is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Additive manufactured PCL/TCP(Si) scaffolds have been fabricated using a screw extrusion system (SES). Compression testing demonstrates that both the compressive modulus and compressive yield strength of the developed PCL/TCP(Si) scaffolds fall within the lower ranges of mechanical properties for cancellous bone, with a compressive modulus and compressive yield strength of 6.0 times and 2.3 times of those of PCL/TCP scaffolds, respectively. To enhance the osteoconductive property of the developed PCL/TCP(Si) scaffolds, a CHA-gelatin composite has been coated onto the scaffolds via a biomimetic co-precipitation process, which is verified by using scanning electron microscopy (SEM) and XPS. Confocal laser microscopy and SEM images reveal a most uniform distribution of porcine bone marrow stromal cells (BMSCs) and cellsheet accumulation on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds. The proliferation rate of BMSCs on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds is 2.0 and 1.4 times higher compared to PCL/TCP(Si) and CHA coated PCL/TCP(Si) scaffolds, respectively, by day 10. Furthermore, the reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses reveal that CHA-gelatin composite coated PCL/TCP(Si) scaffolds stimulate osteogenic differentiation of BMSCs the most compared to the other scaffolds. In vitro results of SEM, confocal microscopy and proliferation rate also show that there is no detrimental effect of GPTMS modification on biocompatibility of the scaffolds.