993 resultados para Score reading introduction
Resumo:
Installing hydroxymethyl and hydroxyethyl substitutions at C-4 through vinylation and hydroboration-oxidation reactions of the C-4 bis-hydroxymethyl derivative of D-glucose based substrate, and inserting heteroatoms thereafter permitted formation of N-, O-, or S-heterocycles leading to [4,5]or [5,5]-spirocycles and a bicyclo[3.3.0]octane product. Some of the spirocycles were converted to spironucleosides under Vorbruggen glycosidation reaction conditions. Similarly, the bicyclic product was elaborated to the corresponding bicyclic nucleoside as well as an unexpected tricyclic nucleoside.
Resumo:
Dysregulation of lipid and glucose metabolism in the postprandial state are recognised as important risk factors for the development of cardiovascular disease and type 2 diabetes. Our objective was to create a comprehensive, standardised database of postprandial studies to provide insights into the physiological factors that influence postprandial lipid and glucose responses. Data were collated from subjects (n = 467) taking part in single and sequential meal postprandial studies conducted by researchers at the University of Reading, to form the DISRUPT (DIetary Studies: Reading Unilever Postprandial Trials) database. Subject attributes including age, gender, genotype, menopausal status, body mass index, blood pressure and a fasting biochemical profile, together with postprandial measurements of triacylglycerol (TAG), non-esterified fatty acids, glucose, insulin and TAG-rich lipoprotein composition are recorded. A particular strength of the studies is the frequency of blood sampling, with on average 10-13 blood samples taken during each postprandial assessment, and the fact that identical test meal protocols were used in a number of studies, allowing pooling of data to increase statistical power. The DISRUPT database is the most comprehensive postprandial metabolism database that exists worldwide and preliminary analysis of the pooled sequential meal postprandial dataset has revealed both confirmatory and novel observations with respect to the impact of gender and age on the postprandial TAG response. Further analysis of the dataset using conventional statistical techniques along with integrated mathematical models and clustering analysis will provide a unique opportunity to greatly expand current knowledge of the aetiology of inter-individual variability in postprandial lipid and glucose responses.
Resumo:
This paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favorably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates.