618 resultados para Scenedesmus obliquus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope analysis of two species (or groups of species) of planktonic foraminifers: Globigerinoides ruber (or G. obliquus and G. obliquus extremus) and Globigerina bulloides (or G. falconensis and G. obesa) from ODP Hole 653A and Site 654 in the Tyrrhenian basin, records the Pliocene-Pleistocene glacial history of the Northern Hemisphere. The overall increase in mean d18O values through the interval 4.6-0.08 Ma is 1.7 per mil for G. bulloides and 1.5 per mil for G. ruber. The time interval 3.1-2.5 Ma corresponds to an important phase of 18O enrichment for planktonic foraminifers. In this interval, glacial d18O values of both species G. bulloides and G. ruber increase by about l per mil, this increase being more progressive for G. ruber than for G. bulloides. The increase of interglacial d18O values is higher for G. bulloides (1.5 per mil) than for the Gruber group (1 per mil). These data suggest a more pronounced seasonal stratification of the water masses during interglacial phases. Large positive d18O fluctuations of increasing magnitude are also recorded at 2.25 and 2.15 Ma by G bulloides and appear to be diachronous with those of Site 606 in the Atlantic Ocean. Other events of increasing d18O values are recorded between 1.55 and 1.3 Ma, at 0.9 Ma, 0.8 Ma, and near 0.34 Ma. In the early Pliocene the d18O variability recorded by the planktonic species G. bulloides was higher in the Mediterranean than in the Atlantic at the same latitude. This suggests that important cyclic variations in the water budget of the Mediterranean occurred since that time. Step increases in the d18O variability are synchronous with those of the open ocean at 0.9 and 0.34 Ma. The higher variability as well as the higher amplitude of the peaks of 18O enrichment may be partly accounted for by increase of dryness over the Mediterranean area. In particular the high amplitude d18O fluctuations recorded between 3.1 and 2.1 Ma are correlated with the onset of a marked seasonal contrast and a summer dryness, revealed by pollen analyses. Strong fluctuations towards d13C values higher than modern ones are recorded by the G. ruber group species before 1.7 Ma and suggest a high production of phytoplankton. When such episodes of high primary production are correlated with episodes of decreasing 13C content of G. bulloides, they are interpreted as the consequence of a higher stratification of the upper water masses resulting itself from a marked seasonality. Such episodes occur between 4.6 and 4.05 Ma, 3.9 and 3.6 Ma, and 3.25 and 2.66 Ma. The interval 2.66-1.65 Ma corresponds to a weakening of the stratification of the upper water layers. This may be related to episodes of cooling and increasing dryness induced by the Northern Hemisphere Glaciations. The Pleistocene may have been a less productive period. The transition from highly productive to less productive surface waters also coincides with a new step increase in dryness and cooling, between 1.5 and 1.3 Ma. The comparison of the 13C records of G ruber and G. bulloides in fact suggests that a high vertical convection became a dominant feature after 2.6 Ma. Increases in the nutrient input and the stratification of the upper water masses may be suspected, however, during short episodes near 0.86 Ma (isotopic stage 25), 0.57-0.59 Ma (isotopic stage 16), 0.49 Ma (isotopic stage 13), 0.4-0.43 Ma (isotopic stage 11), and 0.22 and 0.26 Ma (part of isotopic stage 7 and transition 7/8). In fact, changes in the C02 balance within the different water masses of the Tyrrhenian basin as well as in the local primary production did not follow the general patterns of the open ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Miocene sediments of the Tyrrhenian ODP Site 654 encompass a deepening sequence which begins with glauconite shallow water sands followed by a rapid transition to deep water sediments and culminates with dolomitic mudstones associated with Messinian evaporites. The sequence compares well with the so-called 'Sahelian cycle' and with post-orogenic cycles recognized in peninsular Italy and Sicily. The studied interval, consisting of 55 m thick nannofossil oozes, belongs to the Globorotalia suterae subzone and lower part of the Globorotalia conomiozea Zone, indicating late Tortonian and early Messinian age, respectively. Biomagnetostratigraphic correlation assigns the Tortonian/ Messinian boundary an age of 6.44-6.45 Ma. In addition, six main events have been recognized, based on the range of keeled globorotaliids and coiling direction changes of keeled and unkeeled globorotaliids, which have been correlated to the geomagnetic time-scale. Comparison with North Atlantic sites and land sections of the Guadalquivir basin and northern Morocco provides good correlations with the events documented in these areas. In particular, Event IV, which predates the FO of Globorotalia conomiozea, may be used to recognize the Tortonian/Messinian boundary in extra-Mediterranean areas where G. conomiozea is missing. Variations in the distribution of different species of Globigerinoides are related to changes in the surficial marine environment. Although no clear trends can be recognized on the oxygen and carbon isotope records of Globigerinoides obliquus, the parallelism between the occurrence of low salinity species (G. sacculifer) and peaks of low 5180 values, as well as that of normal salinity species (G. obliquus) and peaks of high d18O values, suggests strong local changes of environmental conditions. The high amplitude of the fluctuations of d18O values suggests important variations in the salinity of the Tyrrhenian Sea, related to a rapidly changing water budget. The major feature of the carbon isotope record is a large decrease between 7.0 and 6.95 Ma, which therefore predates the 6.2 Ma global 'carbon shift'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diverse, warm-water planktonic foraminiferal faunas prevailed on the Wombat and Exmouth plateaus during the Neogene, in spite of the northward drift of Australia across 10° to 15° latitude since the early Miocene. Invasions of cool-water species occurred during periods of global cooling in the late middle Miocene, late Miocene, and Pleistocene, and reflect periods of increased northward transport of cool surface water, probably via the West Australian Current. The sedimentary record of the Neogene on Wombat and Exmouth Plateau is interrupted by two hiatuses (lower Miocene, Zone N5, and upper middle to upper Miocene, Zones N15-N17), and one redeposited section of upper Miocene to uppermost Pliocene sediments. Mechanical erosion or nondeposition by increased deep-water flow or tilting and uplift of Wombat and Exmouth plateaus, resulting in sediment shedding, are the most likely explanations for these Miocene hiatuses, but which of these processes were actually operative on the Wombat and Exmouth plateaus is uncertain. The redeposited section of upper Miocene to uppermost Pliocene sediments in Hole 761B, however, certainly reflects a latest Pliocene period of uplift and tilting of the Wombat Plateau. An important finding was the occurrence of Zone N15-correlative sediments in Hole 762B without any representative of Neogloboquadrina. Similar findings in Java and Jamaica indicate that the earliest spreading of Neogloboquadrina acostaensis in the tropical region resulted from migration. The evolution of this species, therefore, must have taken place in higher latitudes. I suggest that Neogloboquadrina acostaensis evolved from Neogloboquadrina atlantica in the North Atlantic within Zone NN9, but how and where in the region this speciation took place is still uncertain

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monograph is devoted to the main results of research on the Trans Indian Ocean Geotraverse from the Maskarene Basin to the north-western margin of Australia. These results were obtained by Russian specialists and together with Indian specialists during 15 years of cooperation in investigation of geological structure and mineral resources of the Indian Ocean. The monograph includes materials on information support of marine geological and geophysical studies, composition and structure of information resources on the Indian Ocean, bathymetry and geomorphology, structure and geological nature of the magnetic field, gravity field, plate tectonics, crustal structure and sedimentary cover, seismic stratigraphy, perspectives for detecting oil and gas, solid minerals, sediment composition, composition and properties of clay minerals, stratigraphy and sediment age, chemical composition of sediments, composition of and prospects for solid minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 41 Neogene sediments were recovered from five sites off northwest Africa. On the Sierra Leone Rise (Site 366), Neogene sediments consist of nanno oozes, nanno chalk, and calcareous clays 230 meters thick, resting conformably on the late Oligocene sediments. The common succession of zones occurs with two hiatuses. The lower gap corresponds to an interval around the lower/middle Miocene boundary (the Praeorbulina glomerosa and Orbulina suturalis-Globorotalia peri-pheroronda zones are absent) and the upper gap coincides with an interval around the middle/upper Miocene boundary (the Sphaeroidinellopsis sub-dehiscens-GIobigerina druryi, Globigerina nepenthes-Globorotalia siakensis and Globorotalia conlinuosa zones are missing). In the Cape Verde Basin (Site 367) deep-water Neogene turbidites (about 200-250 m thick) contain poor fauna of redeposited and sorted Cretaceous, Eocene, Oligocene, and Neogene species. On the Cape Verde Rise (Site 368) the Neogene section starts with slightly calcareous and non-calcareous clays with poor planktonic foraminifers of the lower Miocene. Later on this area was uplifted and clayey sediments have been replaced upsection in order by more shallow-water clayey nanno and nanno-foraminifer oozes and marls and pure calcareous oozes. In the middle Miocene, planktonic foraminifers are still not diverse, but since the level of the Globigerina nepenthes-Globorotalia siakensis Zone, almost all Neogene zones have been traced. The minimum thickness of the Neogene sediments is about 230 meters. On the continental slope off Spanish Sahara (Site 369) monotonous calcareous pelagic sediments of Neogene age (164 m thick) overlie the late Oligocene comformably, or with a small time gap. A set of zones beginning from the Globigerinoides primordis-Globorotaiia kugleri Zone up to the Globorotalia fohsi fohsi Zone has been revealed with a gap corresponding to the Globigerinita stainforthi and the Globigerinatella insueta-Globigerinoides irilobus zones. Above that follow sediments with heterogeneous microfauna which result from redeposition or mixing of sediments during drilling. The section ends with sediments of the late Miocene and lower Pliocene with abundant planktonic foraminifers. The latter are unconformably overlain by the Quaternary ooze. In the Morocco basin (Site 370) deep-water marls and calcareous clays of the lower Miocene contain poor assemblages of planktonic foraminifers. The middle and upper Miocene are represented by turbidites (alternation of nanno oozes, clays, siltstones, and sands) with heterogeneous microfauna. Total thickness of Neogene is up to 200 meters. In general the Neogene foraminifer microfauna of the area studied includes the majority of species which developed within the tropical-subtropical belt. The entire succession of the Miocene and Pliocene foraminifer zones occurs. The only exclusion is the Sphaeroidinellopsis subdehiscens-Globigerina druryi Zone of the middle Miocene. The distribution of species is shown on three tables. Comments are given for 47 species and subspecies of foraminifers (stratigraphic ranges, peculiarities of morphology, and ultrastructure of the shell wall).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mid-Piacenzian (MP) warm period (3.264-3.025 Ma) has been identified as the most recent time in geologic history during which mean global surface temperatures were considerably warmer than today for a sustained period. This interval has therefore been proposed as a potential (albeit imperfect) analog for future climate change and as such, has received much scientific attention over the past two decades. Central to this research effort is the Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) project, an iterative paleoenvironmental reconstruction of the MP focused on increasing our understanding of warm-period climate forcings, dynamics, and feedbacks by providing three-dimensional data sets for general circulation models. A mainstay of the PRISM project has been the development of a global sea surface temperature (SST) data set based primarily upon quantitative analyses of planktic foraminifer assemblages, supplemented with geochemical SST estimates wherever possible. In order to improve spatial coverage of the PRISM faunal data set in the low and mid-latitude North Atlantic, this study provides a description of the MP planktic foraminifer assemblage from five Ocean Drilling Program sites (951, 958, 1006, 1062, and 1063) in the subtropical gyre, a region critical to Atlantic Ocean circulation and tropical heat advection. Assemblages from each core provide evidence for a temperature- and circulation-driven 5-10° northward displacement of MP faunal provinces, as well as regional shifts in planktic foraminifer populations linked to species ecology and interactions. General biogeographic trends also indicate that, relative to modern conditions, gyre circulation was stronger (particularly the Gulf Stream, North Atlantic Current, and North Equatorial Current) and meridionally broader. A comparison of mid-Piacenzian and modern North Atlantic planktic foraminifer assemblages suggests that low latitude western boundary currents were less than 1 °C warmer while eastern boundary currents were ~1-2 °C warmer, supporting the hypothesis of enhanced northward heat advection along western boundary currents and warming of high latitude Northeast Atlantic source regions for the Canary Current. These findings are consistent with a model of reduced meridional SST gradients, with little-to-no low latitude warming, and more vigorous ocean circulation. Results therefore support the theory that enhanced meridional overturn circulation and associated northward heat advection made an important contribution, in conjunction with elevated atmospheric CO2 concentrations, to the 2-3 °C global surface temperature increase (relative to today) and strong polar amplification of SST warmth during the MP warm period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On Deep Sea Drilling Project Leg 54, we recovered upper Pliocene (Globigerinoides obliquus: PL6 zone) to Pleistocene sediments from the equatorial East Pacific Rise (EPR) and Galapagos spreading center (GSC). Progressively older sediments were drilled at increasing distances from the crest, with the exception of the sediment drilled in the deepest trough known in the Siqueiros fracture zone. The anomalous age obtained at the latter site suggests that the basalt which was drilled may represent fracture zone volcanism. Paleoenvironmental analysis using the planktonic foraminifers at the EPR sites indicated the presence of environmental cycles of shorter wave length during the interval from 0 to 0.24 Ma, whereas cycles of longer wave length occurred from 0.43 to 2.17 Ma. The planktonic foraminiferal taphocoenoses at the EPR sites were strongly affected by selective dissolution which indicated that these EPR sites have been near either the lysocline or carbonate compensation surface since the upper Pliocene. The planktonic foraminiferal thanatocoenoses at the GSC sites were preserved better than those at the EPR sites. The number of planktonic foraminiferal species generally was greatly reduced in the green mud associated with the GSC hydrothermal mounds. More species were found in older than in younger green mud; this suggests that there probably was an increase in the rate of production of green mud sometime after the initiation of the hydrothermal system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.