994 resultados para Scanning force


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current–distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4′-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of [similar]70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of [similar]140 μm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into −P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of [similar]20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (DA), (AA), (DD) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FULL TEXT: Like many people one of my favourite pastimes over the holiday season is to watch the great movies that are offered on the television channels and new releases in the movie theatres or catching up on those DVDs that you have been wanting to watch all year. Recently we had the new ‘Star Wars’ movie, ‘The Force Awakens’, which is reckoned to become the highest grossing movie of all time, and the latest offering from James Bond, ‘Spectre’ (which included, for the car aficionados amongst you, the gorgeous new Aston Martin DB10). It is always amusing to see how vision correction or eye injury is dealt with by movie makers. Spy movies and science fiction movies have a freehand to design aliens with multiples eyes on stalks or retina scanning door locks or goggles that can see through walls. Eye surgery is usually shown in some kind of day case simplified laser treatment that gives instant results, apart from the great scene in the original ‘Terminator’ movie where Arnold Schwarzenegger's android character encounters an injury to one eye and then proceeds to remove the humanoid covering to this mechanical eye over a bathroom sink. I suppose it is much more difficult to try and include contact lenses in such movies. Although you may recall the film ‘Charlie's Angels’, which did have a scene where one of the Angels wore a contact lens that had a retinal image imprinted on it so she could by-pass a retinal scan door lock and an Eddy Murphy spy movie ‘I-Spy’, where he wore contact lenses that had electronic gadgetry that allowed whatever he was looking at to be beamed back to someone else, a kind of remote video camera device. Maybe we aren’t quite there in terms of devices available but these things are probably not the behest of science fiction anymore as the technology does exist to put these things together. The technology to incorporate electronics into contact lenses is being developed and I am sure we will be reporting on it in the near future. In the meantime we can continue to enjoy the unrealistic scenes of eye swapping as in the film ‘Minority Report’ (with Tom Cruise). Much more closely to home, than in a galaxy far far away, in this issue you can find articles on topics much nearer to the closer future. More and more optometrists in the UK are becoming registered for therapeutic work as independent prescribers and the number is likely to rise in the near future. These practitioners will be interested in the review paper by Michael Doughty, who is a member of the CLAE editorial panel (soon to be renamed the Jedi Council!), on prescribing drugs as part of the management of chronic meibomian gland dysfunction. Contact lenses play an active role in myopia control and orthokeratology has been used not only to help provide refractive correction but also in the retardation of myopia. In this issue there are three articles related to this topic. Firstly, an excellent paper looking at the link between higher spherical equivalent refractive errors and the association with slower axial elongation. Secondly, a paper that discusses the effectiveness and safety of overnight orthokeratology with high-permeability lens material. Finally, a paper that looks at the stabilisation of early adult-onset myopia. Whilst we are always eager for new and exciting developments in contact lenses and related instrumentation in this issue of CLAE there is a demonstration of a novel and practical use of a smartphone to assisted anterior segment imaging and suggestions of this may be used in telemedicine. It is not hard to imagine someone taking an image remotely and transmitting that back to a central diagnostic centre with the relevant expertise housed in one place where the information can be interpreted and instruction given back to the remote site. Back to ‘Star Wars’ and you will recall in the film ‘The Phantom Menace’ when Qui-Gon Jinn first meets Anakin Skywalker on Tatooine he takes a sample of his blood and sends a scan of it back to Obi-Wan Kenobi to send for analysis and they find that the boy has the highest midichlorian count ever seen. On behalf of the CLAE Editorial board (or Jedi Council) and the BCLA Council (the Senate of the Republic) we wish for you a great 2016 and ‘may the contact lens force be with you’. Or let me put that another way ‘the CLAE Editorial Board and BCLA Council, on behalf of, a great 2016, we wish for you!’

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spray-dried materials are being used increasingly in industries such as food, detergent and pharmaceutical manufacture. Spray-dried sodium carbonate is an important product that has a great propensity to cake; its moisture-sorption properties are very different to the crystalline and amorphous species, with a great affinity for atmospheric moisture. This work demonstrates how the noncontact surface analysis of individual particles using atomic force microscopy can highlight the possible mechanisms of unwanted agglomeration. The nondestructive nature of this method allows cycling of localised humidity in situ and repeated scanning of the same particle area. The resulting topography and phase scans showed that humidity cycling caused changes in the distribution of material phases that were not solely dependent on topographical changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrocopolymerization of carbazole and acrylamide on highly oriented pyrolytic graphite (HOPG) from ACN solutions via cyclovoltammetry (CV) was studied in order to evaluate the possibility to deposit uniform and thin but pinhole-free and still reactive coatings onto graphite-like substrates. The morphology of the coatings was investigated using atomic force microscopy and the coating thicknesses and optical parameters were measured using ellipsometry. It was found that under the chosen conditions thin (coating thickness hf>180 nm) and relatively smooth (root mean square surface roughness RMS<150 nm) P(Cz-co-AAm)-coatings exhibiting a uniform globuoidal morphology can be deposited onto graphite. From a certain coating thickness (hf>50 nm) no pinholes could be detected. It was found that the thickness of the deposited coatings increases almost linearly with increasing number of CV-cycles while keeping all other experimental parameters (scan rate and comonomer concentration ratio) constant. No influence of the comonomer concentration ratio on the film thickness and coating appearance could be observed, however, at quite low initial concentrations. However, the CV-scanning rate has quite a significant influence on the thickness of the deposited coatings. Higher scan rates (100 mV/s) result in thin (hf≈22 nm) coatings whereas at lower scan rates (<50 mV/s) coatings with thicknesses of approximately 50 nm were obtained. The optical coating parameters (the refractive index n and extinction coefficient k) seem to be independent of the deposition parameters and therefore averaged values of n̄=1.54±0.03 and k̄=0.08±0.03 were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this thesis deals with the phenomenon of thermoelectricity. It involves the improvement of the thermoelectric properties of silicon using innovative nanostructures. My contribution was to help fabricate these thermoelectric devices, and is the focus of this part of the thesis.

The second part and primary focus of this thesis is the analysis of thin films using scanning probe techniques. These surface techniques include atomic force microscopy, electric force microscopy, Kelvin probe force microscopy, and scanning tunneling microscopy. The thin films studied are graphene and molybdenum disulfide, two remarkable materials that display unique two-dimensional qualities. These materials are shown to be useful in studying the properties of adsorbates trapped between them and the substrate on which they rest. Moreover, these adsorbed species are seen to affect the structural and electronic properties of the thin films themselves. Scanning probe analyses are particularly useful in elucidating the properties of these materials, as surface effects play a significant role in determining their characteristics.

The final part of this thesis is concerned with the study of Akt in live cells using protein capture agents previously developed by my colleagues. The activation and degradation of Akt is investigated using various biological assays, including Western blots, in vitro kinase assays, and cell viability assays. Finally, the usefulness of synthetic capture agents in perturbing protein pathways and as delivery agents is assessed and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass transition temperature of spaghetti sample was measured by thermal and rheological methods as a function of water content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations