810 resultados para Saturated fatty acids
Resumo:
The dissected carcass composition and fatty acid profiles of intermuscular fat from 110 male goat kids from six genotypes i.e. Boer x Angora (BA), Boer x Feral (BF), Boer x Saanen (BS), Feral x Feral (1717), Saanen x Angora (SA) and Saanen x Feral (SF) and two slaughter weight groups i.e. Capretto and Chevon (liveweight at slaughter 14-22 and 30-35 kg, respectively) were compared. Carcass tissue distribution for various genotypes was: muscle (63-66%), fat (10-13%) and bone (21-24%). Genotype significantly (P < 0.05) influenced the carcass composition; BA and FF carcasses had significantly higher muscle to bone ratio, while carcasses from BS kids were leaner compared to other genotypes. However, the two slaughter weight groups did not differ significantly (P > 0.05) in terms of carcass composition, when compared at the same carcass weight. In the present study, significant (P < 0.01) correlations were observed between percentage of muscle, fat and bone in most of the primal cuts and that in the carcass side. The main saturated fatty acids (SFAs) identified were palmitic (16:0) and stearic acid (18:0), while oleic acid (18: 1, omega9) was the main unsaturated fatty acid (UFA) in the intermuscular fat from goat kids. There were significant (P < 0.05) differences between genotypes in the proportions of individual fatty acids. Adipose tissue from BS kids had significantly higher UFAs (mainly oleic acid) and thus had a significantly lower melting point compared to other genotypes. There were significantly higher proportions of palmitic acid (35%) in the adipose tissue from Capretto kids compared to that from Chevon kids (22%). The concentration of UFAs increased in the adipose tissue from Capretto to Chevon carcasses. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This investigation aimed to elucidate the relative roles of putative brevetoxins, reactive oxygen species and free fatty acids as the toxic principle of the raphidophyte Chattonella marina, using damselfish as the bioassay. Our investigations on Australian C. marina demonstrated an absence or only very low concentrations of brevetoxin-like compounds by radio-receptor binding assay and liquid chromatography-mass spectroscopy techniques. Chattonella is unique in its ability to produce levels of reactive oxygen species 100 times higher than most other algal species. However, high levels of superoxide on their own were found not to cause fish mortalities. Lipid analysis revealed this raphidophyte to contain high concentrations of the polyunsaturated fatty acid eicosapentaenoic acid (EPA; 18-23% of fatty acids), which has demonstrated toxic properties to marine organisms. Using damselfish as a model organism, we demonstrated that the free fatty acid (FFA) form of EPA produced a mortality and fish behavioural response similar to fish exposed to C. marina cells. This effect was not apparent when fish were exposed to other lipid fractions including a triglyceride containing fish oil, docosahexaenoate-enriched ethyl ester, or pure brevetoxin standards. The presence of superoxide together with low concentrations of EPA accelerated fish mortality rate threefold. We conclude that the enhancement of ichthyotoxicity of EPA in the presence of superoxide can account for the high C. marina fish killing potential. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Objective - The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. Study Design - In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. Result - Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031–0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002–0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125–1.147; P=0.016) in female offspring were found. Conclusion - Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
Food lipid major components are usually analyzed by individual methodologies using diverse extractive procedures for each class. A simple and fast extractive procedure was devised for the sequential analysis of vitamin E, cholesterol, fatty acids, and total fat estimation in seafood, reducing analyses time and organic solvent consumption. Several liquid/liquid-based extractive methodologies using chlorinated and non-chlorinated organic solvents were tested. The extract obtained is used for vitamin E quantification (normal-phase HPLC with fluorescence detection), total cholesterol (normal-phase HPLC with UV detection), fatty acid profile, and total fat estimation (GC-FID), all accomplished in <40 min. The final methodology presents an adequate linearity range and sensitivity for tocopherol and cholesterol, with intra- and inter-day precisions (RSD) from 3 to 11 % for all the components. The developed methodology was applied to diverse seafood samples with positive outcomes, making it a very attractive technique for routine analyses in standard equipped laboratories in the food quality control field.
Resumo:
A radiometric assay system has been used to study oxidation patterns of (1-14C) fatty acids by drug-susceptible and drug-resistant organisms of the genus Mycobacterium. Two strains of M. tuberculosis susceptible to all drugs, H37Rv and Erdman, were used. Drug-resistant organisms included in this investigation were M. tuberculosis H37Rv resistant to 5 ug/ml isoniazid, M. bovis, M. avium, M. intracellular, M. kansasii and M. chelonei. The organisms were inoculated in sterile reaction vials containing liquid 7H9 medium, 10% ADC enrichment and 1.0 uCi of one of the (1-14C) fatty acids (butyric, hexánoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic). Vials were incubated at 37°C and the 14CO2 envolved was measured daily for 3 days with a Bactec R-301 instrument. Although each individual organism displayed a different pattern of fatty oxidation, these patterns were not distinctive enough for identification of the organism. No combination of fatty acids nor preferential oxidation of long chain or of short chain fatty acids were able to separate susceptible from resistant organisms. Further investigation with a larger number of drug susceptible mycobacteria including assimilation studies and oxidation of other substrates may be required to achieve a distinction between drug-susceptible and drug-resistant mycobacteria.
Resumo:
OBJECTIVE: The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. STUDY DESIGN: In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. RESULT: Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031-0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002-0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125-1.147; P=0.016) in female offspring were found. CONCLUSION: Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
ABSTRACTINTRODUCTION:The larvicidal activity of oils, fatty acids, and methyl esters of Solanum lycocarpum fruit against Culex quinquefasciatus is unknown.METHODS:The larvicidal activity of samples of ripe and unripe fruit from S. lycocarpum was evaluated against third and fourth instar larvae of C. quinquefasciatus .RESULTS:The oils, fatty acids, and methyl esters of S. lycocarpum showed the greatest larvicidal effect (57.1-95.0%) at a concentration of 100mg/L (LC 50values between 0.70 and 27.54mg/L).CONCLUSIONS:Solanum lycocarpum fruit may be a good source of new natural products with larvicidal activity.
Resumo:
Synthesis gas, a mixture of CO, H2, and CO2, is a promising renewable feedstock for bio-based production of organic chemicals. Production of medium-chain fatty acids can be performed via chain elongation, utilizing acetate and ethanol as main substrates. Acetate and ethanol are main products of syngas fermentation by acetogens. Therefore, syngas can be indirectly used as a substrate for the chain elongation process.
Resumo:
El cáncer se origina por mutaciones, competición y selección natural en células somáticas de tejidos de diferentes órganos,siendo un proceso complejo y multifactorial que ocurre en una secuencia de etapas: iniciación, promoción y progresión (1). Factores hereditarios,genéticos y epigenéticos como los lípidos dietarios, estrés oxidativo, hormonas, pesticidas y otros, influyen tanto en el desarrollo como en la inhibición de esta enfermedad (2). Datos epidemiológicos y experimentales tanto nuestros como de otros laboratorios han demostrado que el consumo de dietas ricas en ácidos grasos de la familia n-3, n-6 o n-9 cambian la fluidez, la actividad de enzimas, el nivel de proteínas y favorecen la formación de moléculas bioactivas derivadas de los lípidos como los eicosanoides y endocanabinoides que modulan el proceso carcinogénico (3-15). Estos derivados lípídicos activan vias de señalización produciendo cambios especificos en la expresión génica, un proceso fundamental durante la transformación neoplásica (1-2).También ha sido demostrado que estos cambios en la expresión génica inducidos por derivados lipídicos modulan funciones en células cancerosas como proliferación y muerte celular, migración y producción de matriz extracelular (16-17). A pesar de estos conocimientos, la identidad de los derivados lipídicos implicados en la modulación de la expresión génica durante la transformación neoplásica asi como los mecanismos utilizados por estas moléculas permanecen aun poco conocidos. HIPOTESIS: En los modelos a utilizar en el presente proyecto, la variación lipídica de las membranas que se induzca por manipulación dietaria deberán generar también variaciones en los eicosanoides . endocanabinoides y otros peróxidos que afecten factores de transcripción nucleares como el p53 y GLI incidiendo en los mecanismos responsables de la muerte y proliferación de células cancerosas. OBJETIVOS: Nos proponemos establecer el impacto de dietas enriquecidas con ácidos grasos de las familias n-3, n-6 o n-9 sobre modelos experimentales in-vivo e in-vitro. Se estudiarán los ácidos grasos de membrana plasmática, la generación de eicosanoides y endocanabinoides derivados de las vias COX y LOX Además se determinará el efecto de los peróxidos en la expresión y actividad de los factores nucleares de transcripción p53 y GLI como mecanismos responsables de la muerte y proliferación celular. MATERIALES Y MÉTODO: Se utilizará un modelo in-vivo de cáncer de mama empleando ratones C57BL6J inducidos con DMBA que se alimentarán con una dieta base semi-sintética suplemetada con diferentes PUFAs (Chia: n-3, Maíz: n-6 y Oleico: n-9 , empleada en estudios previos (8).Modelos in vitro: se utilizarán lineas celulares cancerígenas humanas de mama MCF-7 y MDA, las cuales se tratarán exógenamente con diferentes PUFAS (GLA:n-6,EPA:n-3, Oleico n-9)(9). Se determinarán ácidos grasos de membranas por Cromatografía de gas (CG)(10-11). El análisis de eicosanoides en células tumorales se realizará por HPLC (9-11). Los endocanabinoides por GC-Espectometría de Masa (18).La formación de peróxidos intracelulares se determinará por análisis de Glutation reducido (GSH)(16).La apoptosis se medirá por actividad caspasas y por Citometria de flujo usando Annexina V FICT (19).La expresión celular de Tp53 y GLI se realizará por Western Blot, PCR e inmunohistoquímica (20-21).RESULTADOS ESPERADOS: Se espera que los lípidos añadidos en las dietas de ratones inyectados con DMBA o al medio de cultivo de células tumorales de mama o páncreas modifiquen los ácidos grasos de membrana y sus derivados lipídicos los eicosanoides y endocanabionoides que suponemos afectarán la activación y expresión de factores de transcripción regulando la carcinogénesis. IMPORTANCIA: Diseñar nuevos modelos experimentales para implementar en terapias génicas y aplicar los resultados sobre factores nutricionales que pudieran actuar como inhibidores o promotores del desarrollo del cáncer en humanos.
Resumo:
IDX-1 (islet/duodenum homeobox-1) is a transcription factor expressed in the duodenum and pancreatic beta and delta cells. It is required for embryonic development of the pancreas and transactivates the Glut2, glucokinase, insulin, and somatostatin genes. Here we show that exposure of isolated rat pancreatic islets to palmitic acid induced a approximately 70% decrease in IDX-1 mRNA and protein expression as well as 40 and 65% decreases in the binding activity of IDX-1 for its cognate cis-regulatory elements of the Glut2 and insulin promoters, respectively. The inhibitory effect of palmitic acid required its mitochondrial oxidation since it was prevented by the carnitine palmitoyltransferase I inhibitor bromopalmitic acid. The palmitic acid effect on IDX-1 was correlated with decreases in GLUT2 and glucokinase expression of 40 and 25%, respectively, at both the mRNA and protein levels. Insulin and somatostatin mRNA expression was also decreased by 40 and 60%, whereas glucagon mRNA expression was not modified. After 48 h of exposure to fatty acids, total islet insulin, somatostatin, and glucagon contents were decreased by 85, 55, and 65%, respectively. At the same time, total hormone release was strongly stimulated (13-fold) for glucagon, whereas its was only marginally increased for insulin and somatostatin (1.5- and 1.7-fold, respectively). These results indicate that elevated fatty acid levels 1) negatively regulate Idx-1 expression; 2) decrease the expression of genes transactivated by IDX-1 such as those for GLUT2, glucokinase, insulin, and somatostatin; and 3) lead to an important increase in glucagon synthesis and secretion. Fatty acids thus have pleiotropic effects on pancreatic islet gene expression, and the negative control of Idx-1 expression may be an initial event in the development of these multiple defects.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and are activated by a structurally diverse group of compounds including fatty acids, eicosanoids, and hypolipidemic drugs such as fibrates and thiazolidinediones. While thiazolidinediones and 15-deoxy-Delta12, 14-prostaglandin J2 have been shown to bind to PPARgamma, it has remained unclear whether other activators mediate their effects through direct interactions with the PPARs or via indirect mechanisms. Here, we describe a novel fibrate, designated GW2331, that is a high-affinity ligand for both PPARalpha and PPARgamma. Using GW2331 as a radioligand in competition binding assays, we show that certain mono- and polyunsaturated fatty acids bind directly to PPARalpha and PPARgamma at physiological concentrations, and that the eicosanoids 8(S)-hydroxyeicosatetraenoic acid and 15-deoxy-Delta12,14-prostaglandin J2 can function as subtype-selective ligands for PPARalpha and PPARgamma, respectively. These data provide evidence that PPARs serve as physiological sensors of lipid levels and suggest a molecular mechanism whereby dietary fatty acids can modulate lipid homeostasis.
Resumo:
Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.
Resumo:
BACKGROUND & AIMS: n-3 fatty acids are expected to downregulate the inflammatory responses, and hence may decrease insulin resistance. On the other hand, n-3 fatty acid supplementation has been reported to increase glycemia in type 2 diabetes. We therefore assessed the effect of n-3 fatty acids delivered with parenteral nutrition on glucose metabolism in surgical intensive care patients. METHODS: Twenty-four surgical intensive care patients were randomized to receive parenteral nutrition providing 1.25 times their fasting energy expenditure, with 0.25 g of either an n-3 fatty acid enriched-or a soy bean-lipid emulsion. Energy metabolism, glucose production, gluconeogenesis and hepatic de novo lipogenesis were evaluated after 4 days. RESULTS: Total energy expenditure was significantly lower in patients receiving n-3 fatty acids (0.015+/-0.001 vs. 0.019+/-0.001 kcal/kg/min with soy bean lipids (P<0.05)). Glucose oxidation, lipid oxidation, glucose production, gluconeogenesis, hepatic de novo lipogenesis, plasma glucose, insulin and glucagon concentrations did not differ (all P>0.05) in the 2 groups. CONCLUSIONS: n-3 fatty acids were well tolerated in this group of severely ill patients. They decreased total energy expenditure without adverse metabolic effects.
Resumo:
The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.