974 resultados para Sap flow density
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.
Resumo:
The double neutron-proton differential transverse flow taken from two reaction systems using different isotopes of the same element is studied at incident beam energies of 400 and 800 MeV/nucleon within the framework of an isospin- and momentum-dependent hadronic transport model IBUU04. The double differential flow is found to retain about the same sensitivity to the density dependence of the nuclear symmetry energy as the single differential flow in the more neutron-rich reaction. Because the double differential flow reduces significantly both the systematic errors and the influence of the Coulomb force, it is thus more effective probe for the high-density behavior of the nuclear symmetry energy.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, we investigated the neutron-proton differential flow in the (132) Sn + (124) Sn mid-central collisions at beam energies of 400MeV/A, 600MeV/A and 800MeV/A by adopting two different symmetry energies. It was found that the neutron-proton differential flow as a function of rapidity is very sensitive to the density dependence of symmetry energy, especially at incident energies around 400MeV/A
Resumo:
Effects of stocking density on seston dynamics and filtering and biodeposition by the suspension-cultured Zhikong scallop Chlamys farreri Jones et Preston in a eutrophic bay (Sishili Bay, northern China), were determined in a 3-month semi-field experiment with continuous flow-through seawater from the bay. Results showed that the presence of the scallops could strongly decrease seston and chlorophyll a concentrations in the water column. Moreover, in a limited water column, increasing scallop density could cause seston depletion due to scallop's filtering and biodeposition process, and impair scallop growth. Both filtration rate and biodeposition rate of C. farreri showed significant negative correlation with their density and positive relationship with seston concentration. Calculation predicts that the daily removal of suspended matter from water column by the scallops in Sishili Bay ecosystem can be as high as 45% of the total suspended matter; and the daily production of biodeposits by the scallops in early summer in farming zone may amount to 7.78 g m(-2), with daily C, N and P biodeposition rates of 3.06 x 10(-1), 3.86 x 10(-2) and 9.80 x 10(-3) g m(-2), respectively. The filtering and biodeposition by suspension-cultured scallops could substantially enhance the deposition of total suspended particulate material, suppress accumulation of particulate organic matter in water column, and increase the flux of C, N and P to benthos, strongly enhancing pelagic-benthic coupling. It was suggested that the filtering-biodeposition process by intensively suspension-cultured bivalve filter-feeders could exert strong top-down control on phytoplankton biomass and other suspended particulate material in coastal ecosystems. This study also indicated that commercially suspension-cultured bivalves may simultaneously and potentially aid in mitigating eutrophication pressures on coastal ecosystems subject to anthropogenic N and P loadings, serving as a eutrophic-environment bioremediator. The ecological services (e.g. filtering capacity, top-down control, and benthic-pelagic coupling) functioned by extractive bivalve aquaculture should be emphasized in coastal ecosystems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigated whether oxidation alters the self-aggregation of low density lipoprotein (LDL) and the inhibition of such aggregation by albumin. Incubation with copper for different durations produced mildly, moderately, and highly oxidised LDL (having, respectively, ca. 60, 300 and 160 nmol lipid hydroperoxides/mg protein, and electrophoretic mobilities 1.2, 2.6 and 4.4 times that of native LDL). The rate of flow-induced aggregation was the same for native, mildly oxidised and moderately oxidised LDL, but decreased for highly oxidised LDL. The inhibitory effect of albumin (40 mg/ml) on aggregation was reduced by mild oxidation and further reduced by moderate or severe oxidation. The net result of the two effects was that in the presence of albumin, moderately oxidised LDL had the highest rate of aggregation and native the lowest. The reduction in the anti-aggregatory effect of albumin provides a new mechanism by which LDL oxidation might enhance net aggregation in vivo. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
An automatic Procedure with a high current-density anodic electrodissolution unit (HDAE) is proposed for the determination of aluminium, copper and zinc in non-ferroalloys by flame atonic absorption spectrometry, based on the direct solid analysis. It consists of solenoid valve-based commutation in a flow-injection system for on-line sample electro-dissolution and calibration with one multi-element standard, an electrolytic cell equipped with two electrodes (a silver needle acts as cathode, and sample as anode), and an intelligent unit. The latter is assembled in a PC-compatible microcomputer for instrument control, and far data acquisition and processing. General management of the process is achieved by use of software written in Pascal. Electrolyte compositions, flow rates, commutation times, applied current and electrolysis time mere investigated. A 0.5 mol l(-1) HNO3 solution was elected as electrolyte and 300 A/cm(2) as the continuous current pulse. The performance of the proposed system was evaluated by analysing aluminium in Al-allay samples, and copper/zinc in brass and bronze samples, respectively. The system handles about 50 samples per hour. Results are precise (R.S.D < 2%) and in agreement with those obtained by ICP-AES and spectrophotometry at a 95% confidence level.
Resumo:
"Proof edition."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^
Resumo:
This paper presents the simulation model development of passenger flow in a metro station. The model allows studies of passenger flow in stations with different layouts and facilities, thus providing valuable information, such as passenger flow and density of passenger at critical locations and passenger-handling facilities within a station, to the operators. The adoption of the concept of Petri nets in the simulation model is discussed. Examples are provided to demonstrate its application to passenger flow analysis, train scheduling and the testing of alternative station layouts.
Resumo:
Bioclastic flow deposits offshore from the Soufrie`re Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse-grained and either ungraded or poorly graded, and were deposited by non cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub-units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub-units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi-stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea-level change.