960 resultados para SUSPENDED PARTICLES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentration, distribution, and dynamics of yellow substance were studied during 1980-1982. Colored material accounted for 17-41% of dissolved organic matter and 2-14% of suspended organic matter. A relationship of yellow substance levels with salinity is analyzed. Absorption spectra of suspended particles are studied, occurrence of yellow-colored particles in suspended phase and their distribution in the Gulf of Riga are described. Concentration of suspended yellow organic matter in the upper layer of the gulf was inversely correlated with salinity. Calculations show that 10% of terrigenous humus is flocculated in the gulf during spring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of the GEOTRACES Polarstern expedition ANT XXIV/3 (ZERO and DRAKE), Polonium-210 and Lead-210 have been measured in the water column and on suspended particulate matter in February to April 2008. Our goal was to resolve the affinities of 210Po and 210Pb to transparent exopolymer particles (TEP) and particulate organic carbon (POC). Polonium-210 and Lead-210 in the ocean can be used to identify the sources and sinks of suspended matter. In seawater, Polonium-210 (210Po) and Lead-210 (210Pb) are produced by stepwise radioactive decay of Uranium-238. 210Po (138 days half life) and 210Pb (22.3 years half life) have high affinities for suspended particles. Those radionuclides are present in dissolved form and adsorbed onto particles. Following adsorption onto particle surfaces, 210Po especially is transported into the interior of cells where it bonds to proteins. In this way, 210Po also accumulates in the food chain. 210Po is therefore considered to be a good tracer for POC, and traces particle export over a timescale of months. 210Pb (22.3 years half life) adsorbs preferably onto structural components of cells, biogenic silica and lithogenic particles, and is therefore a better tracer more rapidly sinking matter. Water samples were taken with Niskin bottles. Dissolved Polonium-210 and Lead-210 activities refer to the fraction < 1µm. Particulate Polonium-210 and Lead-210 refer to the activity on particles >1µm retained on nucleopore filters. Zooplankton retained on the filters was systematically removed as this study focused on phytoplankton and exudates. The data have been submitted to Pangaea following a Polonium-Lead intercalibration exercise organized by GEOTRACES, where the AWI lab results range within the data standard deviation from 10 participating labs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O emprego da flotação por ar dissolvido (FAD) para o pós-tratamento de efluentes de reatores anaeróbios aparenta ser atraente considerando algumas características desse processo físico-químico. A FAD é reconhecidamente um processo de alta taxa, particularmente eficiente na remoção de material particulado em suspensão e de flocos produzidos pela coagulação química de águas residuárias. Além disso, há produção de lodo espesso e provavelmente arraste de parcela de gases e de compostos voláteis, presentes nos efluentes anaeróbios. Entretanto, a concepção de sistemas de FAD deve ser precedida por ensaios em unidades de flotação em escala de laboratório, permitindo a determinação dos principais parâmetros do processo. Neste trabalho, são apresentados e discutidos os resultados obtidos em laboratório e em instalação piloto de flotação com escoamento contínuo recebendo efluente de reator anaeróbio de manta de lodo (UASB), com 18 m3 de volume, tratando esgoto sanitário. Os ensaios em unidade em escala de laboratório foram realizados utilizando diferentes dosagens de cloreto férrico (entre 30 e 110 mg/L) ou de polímero catiônico (entre 1,0 e 16,0 mg/L), atuando como coagulantes. Além disso, foram estudadas as condições de floculação (tempo de 15 e de 25 min, e gradiente médio de velocidade de floculação entre 30 e 100 s-1) e diferentes valores de quantidade de ar fornecido ao processo (S*, entre 4,7 e 28,5 g de ar por m3 de efluente). Com a instalação piloto de FAD foram realizados apenas ensaios preliminares variando-se a taxa de aplicação superficial (140 e 210 m3/m2/d) para diferentes valores de S* (14,8 a 29,5 g de ar por m3 de efluente). Com o emprego de dosagem de 65 mg/L de cloreto férrico, de tempo de 15 min e gradiente médio de velocidade de floculação de 80 s-1 e de 19 g de ar por m3 de efluente, foram observados excelentes resultados em laboratório, com elevadas remoções de DQO (89%), de fosfato total (96%), de sólidos suspensos totais (96%), de turbidez (98%), de cor aparente (91%), de sulfetos (não detectado) e NTK (47%). Considerando o sistema UASB e FAD, nos testes em laboratório, foram observadas remoções globais de 97,7% de DQO, de 98,0% de fosfato total, de 98,9% de SST, de 99,5% de turbidez, de 97,8% de cor aparente e de 59,0% de NTK. Nos ensaios com a instalação piloto de FAD, o sistema apresentou remoções de 93,6% de DQO, de 87,1% de SST, de 90% de sulfetos e de 30% de NTK.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1−1.3 μg m−3). The remaining 24 ± 11% (0.03−0.42 μg m−3) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5−2.8 μg m−3), approximately half of which was apportioned to primary biomass burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because the use of filters to sample particulate matter suspended in the upper atmosphere has been investigated and has yielded rather disappointing results, an examination of other methods of upper atmospheric sampling is desirable, and this is the aim of the present report. The nature of any radioactive material, and its relation to the size and composition of the suspended particles is of particular interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Nuclear Magnetic Resonance (NMR) spectra of liquids contain a wealth of quantitative information that may be derived, for instance, from chemical shifts and spin-spin couplings. The available information depends on the incoherent rapid molecular motion that causes complicating effects present in the solid state to average to zero. Whereas liquid state NMR spectra show narrow lines, the corresponding NMR spectra from the solid state are normally composed of exceedingly broad resonance lines due to highly restricted molecular motion. It is, therefore, difficult to obtain directly as detailed information from the spectra of solids as from those derived from the liquid state. Studies on a new technique (SINNMR, the sonically induced narrowing of the NMR spectra of solids) to remove line broadening effects in the NMR spectra of the solid state are reported within this thesis. SINNMR involves narrowing the NMR absorptions from solid particles by irradiating them with ultrasound when they are suspended in a support liquid. It is proposed that ultrasound induces incoherent motion of the suspended particles, producing motional characteristics of the particles similar to those of rather large molecules. The first report of apparently successful experiments involving SINNMR[1] emphasised both the irreproducibility of the technique and the uncertainty regarding its true origin. If SINNMR can be made reproducible and the effect definitively attributed to the sonically induced incoherent motional averaging of particles, the technique could offer a simple alternative to the now classical magic-angle spinning (MAS) NMR[2] and the recently reported dynamic angle spinning (DAS)[3] and double rotation (DOR)[4] techniques. Evidence is presented in this thesis to support the proposal that ultrasound may be used to narrow the NMR spectral resonances from solids by inducing incoherent motion of particles suspended in support liquids and, additionally, for some solids, by inducing rotational motion of molecular constituents in the lattices of solids. Successful SINNMR line narrowing using 20 kHz ultrasound is reported for a variety of samples: including trisodium orthophosphate, polytetrafluoroethylene and aluminium alloys. Investigations of SINNMR line narrowing in trisodium phosphate have revealed the relationship between ultrasonic power, particle size and support liquid density for the production of optimum SINNMR conditions. It is also proposed that the incoherent motion of particles induced by 20 kHz ultrasound can originate from interactions between acoustically induced cavitation microjets and particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Florida Bay is a unique subtropical estuary that while historically oligotrophic, has been subjected to both natural and anthropogenic stressors, including hurricanes, coastal eutrophication and other impacts. These stressors have resulted in degradation of water quality in the past several decades, most evidenced by reoccurring blooms of the picocyanobacterium Synechococcus spp. Major nutrient inputs consist of freshwater flows to the eastern region from runoff and regulated canal releases, inputs from the Everglades to the central region via Taylor Slough, exchanges with the Gulf of Mexico, which include intermittent Shark River inputs to the western region, stormwater and wastewater from the Florida Keys, and atmospheric deposition. These nutrient inputs have resulted in a transition from strong phosphorus (P) limitation of phytoplankton in the eastern bay to nitrogen (N) limitation in the western bay. Large blooms of Synechococcus were most pronounced in the central bay region, in the area of transition between P and N limitation, in the mid-1990s. Although non-toxic, these blooms, which have continued intermittently through the early 2000s, resulted in significant sea-grass and benthic organism mortalities. A new suite of stressors in 2005, including the passages of Hurricanes Katrina, Rita, and Wilma, additional canal releases, and the initiation of road construction to widen the main roadway leading to the Keys, were correlated with a large Synechococcus bloom in the previously clear, strongly P- limited, northeastern region of the bay. Sustained for 3 years, this bloom was accompanied by a shift from P limitation to N limitation during its course. Nutrient bioassay experiments suggest that this bloom persisted due to the ability of Synechococcus to access organic N and P sources, microbial and geochemical cycling of organic and inorganic nutrients in the water column and between the water column and sediments (both suspended particles and benthos), and decreased grazing by benthic fauna due to their die-off.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assemblages of marine sediments on the SW Iberian shelf have been controlled by contributions from distinct sources, which have varied in response to environmental changes since the Last Glacial Maximum (LGM). The rapid, decadal scale Mediterranean overturning circulation permits mixing of suspended particles from the entire Mediterranean Sea. They are entrained into the suspended particulate matter (SPM) carried by Mediterranean Outflow Water (MOW), which enters the eastern North Atlantic through the Strait of Gibraltar and spreads at intermediate depths in the Gulf of Cadiz and along the Portuguese continental margin. Other major sediment sources that have contributed to the characteristics and budget of SPM along the flow path of MOW on the SW Iberian shelf are North African dust and river-transported particles from the Iberian Peninsula. To reconstruct climate- and circulation-driven changes in the supply of sediments over the past ~23000 cal yr B.P., radiogenic Nd, Sr and Pb isotope records of the clay-size sediment fraction were obtained from one gravity core in the Gulf of Cadiz (577 m water depth) and from two gravity cores on the Portuguese shelf (1745 m, 1974 m water depth). These records are supplemented by time series analyses of clay mineral abundances from the same set of samples. Contrary to expectations, the transition from the LGM to the Holocene was not accompanied by strong changes in sediment provenance or transport, whereas Heinrich Event 1 (H1) and the African Humid Period (AHP) were marked by significantly different isotopic signatures reflecting changes in source contributions caused by supply of ice rafted material originating from the North American craton during H1 and diminished supply of Saharan dust during the AHP. The data also reveal that the timing of variations in the clay mineral abundances was decoupled from that of the radiogenic isotope signatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principal effluent in the oil industry is the produced water, which is commonly associated to the produced oil. It presents a pronounced volume of production and it can be reflected on the environment and society, if its discharge is unappropriated. Therefore, it is indispensable a valuable careful to establish and maintain its management. The traditional treatment of produced water, usualy includes both tecniques, flocculation and flotation. At flocculation processes, there are traditional floculant agents that aren’t well specified by tecnichal information tables and still expensive. As for the flotation process, it’s the step in which is possible to separate the suspended particles in the effluent. The dissolved air flotation (DAF) is a technique that has been consolidating economically and environmentally, presenting great reliability when compared with other processes. The DAF is presented as a process widely used in various fields of water and wastewater treatment around the globe. In this regard, this study was aimed to evaluate the potential of an alternative natural flocculant agent based on Moringa oleifera to reduce the amount of oil and grease (TOG) in produced water from the oil industry by the method of flocculation/DAF. the natural flocculant agent was evaluated by its efficacy, as well as its efficiency when compared with two commercial flocculant agents normally used by the petroleum industry. The experiments were conducted following an experimental design and the overall efficiencies for all flocculants were treated through statistical calculation based on the use of STATISTICA software version 10.0. Therefore, contour surfaces were obtained from the experimental design and were interpreted in terms of the response variable removal efficiency TOG (total oil and greases). The plan still allowed to obtain mathematical models for calculating the response variable in the studied conditions. Commercial flocculants showed similar behavior, with an average overall efficiency of 90% for oil removal, however it is the economical analysis the decisive factor to choose one of these flocculant agents to the process. The natural alternative flocculant agent based on Moringa oleifera showed lower separation efficiency than those of commercials one (average 70%), on the other hand this flocculant causes less environmental impacts and it´s less expensive

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water injection in oil reservoirs is a recovery technique widely used for oil recovery. However, the injected water contains suspended particles that can be trapped, causing formation damage and injectivity decline. In such cases, it is necessary to stimulate the damaged formation looking forward to restore the injectivity of the injection wells. Injectivity decline causes a major negative impact to the economy of oil production, which is why, it is important to foresee the injectivity behavior for a good waterflooding management project. Mathematical models for injectivity losses allow studying the effect of the injected water quality, also the well and formation characteristics. Therefore, a mathematical model of injectivity losses for perforated injection wells was developed. The scientific novelty of this work relates to the modeling and prediction of injectivity decline in perforated injection wells, considering deep filtration and the formation of external cake in spheroidal perforations. The classic modeling for deep filtration was rewritten using spheroidal coordinates. The solution to the concentration of suspended particles was obtained analytically and the concentration of the retained particles, which cause formation damage, was solved numerically. The acquisition of the solution to impedance assumed a constant injection rate and the modified Darcy´s Law, defined as being the inverse of the normalized injectivity by the inverse of the initial injectivity. Finally, classic linear flow injectivity tests were performed within Berea sandstone samples, and within perforated samples. The parameters of the model, filtration and formation damage coefficients, obtained from the data, were used to verify the proposed modeling. The simulations showed a good fit to the experimental data, it was observed that the ratio between the particle size and pore has a large influence on the behavior of injectivity decline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of the GEOTRACES Polarstern expedition ANT XXIV/3 (ZERO and DRAKE) we have measured the vertical distribution of 234Th on sections through the Antarctic Circumpolar Current along the zero meridian and in Drake Passage and on an EW section through the Weddell Sea. Steady state export fluxes of 234Th from the upper 100m, derived from the depletion of 234Th with respect to its parent 238U, ranged from 621±105 dpm/m**2/d to 1773±90 dpm/m**2/d. This 234Th flux was converted into an export flux of organic carbon ranging from 3.1-13.2 mmolC/m**2/d (2.1-9.0 mmolC/m**2/d) using POC/234Th ratio of bulk (respectively >50 µm) suspended particles at the export depth (100 m). Non-steady state fluxes assuming zero flux under ice cover were up to 23% higher. In addition, particulate and dissolved 234Th were measured underway in high resolution in the surface water with a semi-automated procedure. Particulate 234Th in surface waters is inversely correlated with light transmission and pCO2 and positively with fluorescence and optical backscatter and is interpreted as a proxy for algal biomass. High resolution underway mapping of particulate and dissolved 234Th in surface water shows clearly where trace elements are absorbed by plankton and where they are exported to depth. Quantitative determination of the export flux requires the full 234Th profile since surface depletion and export flux become decoupled through changes in wind mixed layer depth and in contribution to export from subsurface layers. In a zone of very low algal abundance (54-58 °S at the zero meridian), confirmed by satellite Chl-a data, the lowest carbon export of the ACC was observed, allowing Fe and Mn to maintain their highest surface concentrations (Klunder et al., this issue, Middag et al., this issue). An ice-edge bloom that had developed in Dec/Jan in the zone 60-65 °S as studied during the previous leg (Strass et al., in prep) had caused a high export flux at 64.5 °S when we visited the area two months later (Feb/March). The ice-edge bloom had then shifted south to 65-69 °S evident from uptake of CO2 and dissolved Fe, Mn and 234Th, without causing export yet. In this way, the parallel analysis of 234Th can help to explain the scavenging behaviour of other trace elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drake Passage is a major route for many water masses from the strong Antarctic Circumpolar Current. During the ANTXXIV-3 expedition (in 2008) the vertical distributions of dissolved and size-fractionated particulate 231Pa and thorium isotopes (230Th, 232Th and 234Th) were investigated in order to better define the scavenging regimes and the effects of the oceanic circulation on the fate of particulate material and on the Pa-Th distributions in the water column. The reversible scavenging-model applied to both 230Th and 234Th, in the upper 1500 m depth, gives estimates of the particle dynamics (settling velocities S~ 500-1300 m/y, adsorption and desorption rate constants of 0.1-0.4 1/y and 1-6 1/y respectively). Particulate 234Th/230Th activity ratio shows a depth dependence, with decreasing ratio with increasing depth in agreement with previous studies, but no relationship with particle size was found. 231Pa and thorium isotope fractionation and partition coefficients were investigated with particle size vs depth and latitude and appear to vary horizontally following a North-South gradient. This suggests that both radionuclides are mostly bound to the fine suspended particles. At Drake Passage, the 230Thxs distribution is controlled by a southward upwelling of deep water (clearly visible on the vertical section of total 230Thxs, defined as dissolved + particulate concentrations) and reversible-scavenging processes (linear increase of 230Thxs with increasing depth) with North of the Southern ACC Front, higher settling velocities and less adsorption/desorption cycles, than South of it. Distributions of dissolved and total 231Paxs also reflect the influence of the North-South upwelling but somehow this effect appears to be limited to the upper 1500 m depth of the water column. Below this depth, 231Paxs vertical profiles exhibit contrasted concentrations, with some high dissolved activities in the deep water of the stations in the northern part of the ACC and not South of the ACC. These N-S differences in dissolved 231Paxs were attributed to the different origins and scavenging history of the deep Pacific waters flowing across Drake Passage. Here at North, radionuclides-rich deep water originates from the Central Pacific, while at South, deep water derives from the Southern Pacific in which the observed low radionuclides concentrations are attributed to high opal abundance. South of the Drake Passage, high dissolved and particulate activities of 230Th and 232Th confirmed the intrusion of 230Th-rich Weddell Sea Deep Water (WSDW) close to the Antarctic Peninsula.