982 resultados para SURFACE SALT BRIDGES
Resumo:
A field trial was undertaken to determine the influence of four commercially available film-forming polymers (Bond [alkyl phenyl hydroxyl polyoxyethylene], Newman Crop Spray 11E™ [paraffinic oil], Nu-Film P [poly-1-p menthene], and Spray Gard [di-1-p menthene]) on reducing salt spray injury on two woody species, evergreen oak (Quercus ilex L.) and laurel (Prunus laurocerasus L.). Irrespective of species, the film-forming polymers Nu-Film-P and Spay Gard did not provide any significant degree of protection against salt spray damage irrespective of concentration (1% or 2%) applied as measured by leaf chlorophyll concentrations, photosynthetic efficiency, visual leaf necrosis, foliar sodium and chloride content, and growth (height, leaf area). The film-forming polymer Newman Crop Spray 11E™ provided only 1-week protection against salt spray injury. The film-forming polymer Bond provided a significant (P < 0.05) degree of protection against salt spray injury 3 months after application as manifest by higher leaf chlorophyll content, photosynthetic efficiency, height and leaf area, and lower visual leaf necrosis and foliar Na and Cl content compared with nontreated controls. In conclusion, results indicate that application of a suitable film-forming polymer can provide a significant degree of protection of up to 3 months against salt spray injury in evergreen oak and laurel. Results also indicate that when applied at 1% or 2% solutions, no problems associated with phytotoxicity and rapid degradation on the leaf surface exist.
Resumo:
We study the effects of NaCl on the self-assembly of AAKLVFF and beta A beta AKLVFF in solution. Both AAKLVFF and beta A beta AKLVFF self-assemble into twisted fibers in aqueous solution. The addition of NaCl to aqueous solutions of AAKLVFF produces large crystal-like nanotapes which eventually precipitate. In contrast, highly twisted fibrils were observed for beta A beta AKLVFF solutions at low salt concentration, while a coexistence of highly twisted fibers and nanotubes was observed for beta A beta AKLVFF at high salt concentration. The self-assembled structures observed for beta A beta AKLVFF in NaCl solutions were ascribed to the progressive screening of the beta A beta AKLVFF surface charge caused by the addition of salt.
Resumo:
Long-term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42− additions. DOC release from the top 10 cm of the O-horizon of organo-mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42− l−1 sulphuric acid (H2SO4) and neutral sea-salt solutions (containing Na+, Mg2+, Cl−, SO42−) over a 20-hour extraction period. A significant decrease in the proportion of the acid-sensitive coloured aromatic humic acids (measured by specific ultra-violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42− additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O-horizon of organo-mineral soils and semi-confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42− additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.
Resumo:
Global hydrographic and air–sea freshwater flux datasets are used to investigate ocean salinity changes over 1950–2010 in relation to surface freshwater flux. On multi-decadal timescales, surface salinity increases (decreases) in evaporation (precipitation) dominated regions, the Atlantic–Pacific salinity contrast increases, and the upper thermocline salinity maximum increases while the salinity minimum of intermediate waters decreases. Potential trends in E–P are examined for 1950–2010 (using two reanalyses) and 1979–2010 (using four reanalyses and two blended products). Large differences in the 1950–2010 E–P trend patterns are evident in several regions, particularly the North Atlantic. For 1979–2010 some coherency in the spatial change patterns is evident but there is still a large spread in trend magnitude and sign between the six E–P products. However, a robust pattern of increased E–P in the southern hemisphere subtropical gyres is seen in all products. There is also some evidence in the tropical Pacific for a link between the spatial change patterns of salinity and E–P associated with ENSO. The water cycle amplification rate over specific regions is subsequently inferred from the observed 3-D salinity change field using a salt conservation equation in variable isopycnal volumes, implicitly accounting for the migration of isopycnal surfaces. Inferred global changes of E–P over 1950–2010 amount to an increase of 1 ± 0.6 % in net evaporation across the subtropics and an increase of 4.2 ± 2 % in net precipitation across subpolar latitudes. Amplification rates are approximately doubled over 1979–2010, consistent with accelerated broad-scale warming but also coincident with much improved salinity sampling over the latter period.
Resumo:
We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice–atmosphere and ice–ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice–ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities.
Resumo:
Three water-insoluble, micelle-anchored flavylium salts, 7-hydroxy-3-octyl-flavylium chloride, 4`-hexyl-7-hydroxyflavylium chloride, and 6-hexyl-7-hydroxy-4-methyl-flavylium chloride, have been employed to probe excited-state prototropic reactions in micellar sodium dodecyl sulfate (SDS). In SDS micelles, the fluorescence decays of these three flavylium salts are tetraexponential functions in the pH range from 1.0 to 4.6 at temperatures from 293 to 318 K. The four components of the decays are assigned to Four kinetically coupled excited species in the micelle: specifically, promptly deprotonable (AH(+)*) and nonpromptly deprotonable (AH(h)(+)*) orientations of the acid in the micelle. the base-proton geminate pair (A*center dot center dot center dot H(+)), and the free conjugate base (A*). The initial prompt deprotonation to form the germinate pair occurs at essentially the same rate (k(d) similar to 6-7 x 10(10) s(-1)) for all three photoacids. Recombination of the germinate pair is similar to 3-fold faster than the rate of proton escape from the pair (k(rec) similar to 3 x 10(10) s(-1) and k(diss) similar to 1 x 10(10) s(-1)), corresponding to an intrinsic recombination efficiency of the pair of similar to 75%. Finally, the reprotonation of the short-lived free A* (200-350 ps, depending oil the photoacid) has two components, only one of which depends oil the proton concentration in the intermicellar aqueous phase. Ultrafast transfer of the proton to water and substantial compartmentalization of the photogenerated proton at the micelle surface Oil the picosecond time scale strongly suggest preferential transfer of the proton to preformed hydrogen-bonded water bridges between the photoacid and the anionic headgroups. This localizes the proton in the vicinity of the excited base much more efficiently than ill bulk water, resulting ill the predominance of geminate re reprotonation at the micelle surface.
Resumo:
This study reports a systematic state-of-the-art characterization of new sulfur-chlorine species on the [H, S(2), Cl] potential energy surface. Coupled cluster theory singles and doubles with perturbative contributions of connected triples, using the series of correlation consistent basis sets with extrapolations to the complete basis set limit (CBS), were employed to quantify the energetic quantities involved in the isomerization processes on this surface. The structures and vibrational frequencies are unique for some species and represent the most accurate investigation to date. These molecules are potentially a new route of coupling the sulfur and chlorine chemistries in the atmosphere, and conditions of high concentration of H(2)S (HS) like in volcanic eruptions might contribute to their formation. Also an assessment of the MP2/CBS approach relative to CCSD(T)/CBS provides insights on the expected performance of MP2/CBS on the characterization of polysulfides, and also of more complex systems containing disulfide bridges. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.
Resumo:
The interaction of emeraldine base (PANI-EB) with silver and gold colloids was probed by using Surface-Enhanced Resonance Raman Scattering (SERRS) at 3 different exciting radiations. Due to the great sensitivity of SERRS technique the detection limit of PANI-EB concentration was ca. 2 x 10(-7) mol L(-1) in Ag and Au colloidal suspensions. The UV-vis-NIR spectra of metal colloids in function of PANI-EB concentrations showed that gold colloids present a higher degree of aggregation than silver colloids. SERRS of PANI-EB on metal colloids allowed the study of the polymeric species formed primarily on the metallic surface. The polymer formed after the adsorption of PANI-EB on metallic nanoparticles is strongly dependent on the nature of the metal colloids. The oxidation of PANI-EB to pernigraniline occurred for silver colloids, while a doping process of PANI-EB on Au nanoparticles was evidenced through the observation of the characteristic SERRS spectrum of emeraldine salt at 1064nm.
Resumo:
We have used surface tension measurements, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryo-transmission electron microscopy (cryo-TEM) to investigate the dynamic and structural behavior of octadecyltrimethylammonium bromide (C(18)TAB) micelles in water and NaBr solution. The surface tension data for fixed C(18)TAB concentrations of 25 mM and varied NaBr additions (0-50 mM) shows that the critical micelle concentration (cmc) increases after an initial decrease at 0.5 mM NaBr. This unusual effect has been explained using results from DSC and DLS. At low salt concentrations (below ca. 25 mM) the relaxation time distribution is bimodal with a dominant fast mode due to spherical micelles. Above ca. 35 mM NaBr disklike structures are favored and the relaxation time distribution is more closely unimodal. The postulated sphere-to-disk transition is supported by cryo-TEM micrographs. A pronounced increase in the micellar effective hydrodynamic radius (R-H) is observed as the NaBr concentration is increased above about 35 mM; below 35 mM the R-H of the spherical micelles changes Little with ionic strength.
Resumo:
A análise de dados termohalinos e correntes medidos em uma estação fixa no Canal de Piaçaguera (Estuário de Santos) no inverno foi feita em termos de condições cíclicas da maré (quadratura e sizígia) e quase-estacionária, com o objetivo de caracterizar a estratificação da massa de água estuarina, sua circulação e transporte de sal forçados pela modulação quinzenal da maré. Foram utilizados métodos clássicos de análise de dados observacionais horários e quase sinóticos e de simulações analíticas de perfis estacionários de salinidade e do componente longitudinal da velocidade. Durante o ciclo de maré de quadratura as velocidades de enchente (v<0) e vazante (v>0) variaram de -0.20 m/s a 0.30 m/s, associadas à pequena variação de salinidade entre a superfície e o fundo (26.4 psu a 30.7 psu). No ciclo de sizígia a velocidade aumentou de -0.40 m/s a 0.45 m/s, mas a estratificação de salinidade permaneceu praticamente a mesma. Os perfis estacionários teóricos de salinidade e de velocidade apresentaram boa concordância (Skill próximo a 1,0) quando comparados aos perfis observacionais. Durante a modulação quinzenal da maré não houve alteração na classificação do canal estuarino (tipo 2a-parcialmente misturado e fracamente estratificado), pois a taxa de aumento da energia potencial não foi suficiente para ocasionar a erosão da haloclina. Esses resultados, associados à alta estabilidade vertical (RiL >20) e ao número de Richardson estuarino (1,6), permitem as seguintes conclusões: i) o mecanismo que forçou a circulação e os processos de mistura foi principalmente o balanço da descarga fluvial com a maré, associado ao componente baroclínico da força de gradiente de pressão; ii) não houve variações nas principais características termohalinas e da circulação devido à modulação quinzenal da maré; e iii) os perfis quase estacionários de salinidade e da velocidade foram adequadamente simulados com um modelo analítico clássico.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous research has demonstrated that dehydration increases the threshold temperature for panting and decreases the thermal preference of lizards. Conversely, it is unknown whether thermoregulatory responses such as shuttling and gaping are similarly influenced. Shuttling, as an active behavioural response, is considered one of the most effective thermoregulatory behaviours, whereas gaping has been proposed to be involved in preventing brain over-heating in lizards. In this study we examined the effect of salt loading, a proxy for increased plasma osmolality, on shuttling and gaping in Pogona vitticeps. Then, we determined the upper and lower escape ambient temperatures (UETa and LETa), the percentage of time spent gaping, the metabolic rate ((V) over dot(O2)), the evaporative water loss (EWL) during gaping and non-gaping intervals and the evaporative effectiveness (EWL/(V) over dot(O2)) of gaping. All experiments were performed under isotonic (154 mmol l(-1)) and hypertonic saline injections (625, 1250 or 2500 mmol l(-1)). Only the highest concentration of hypertonic saline altered the UETa and LETa, but this effect appeared to be the result of diminishing the animal's propensity to move, instead of any direct reduction in thermoregulatory set-points. Nevertheless, the percentage of time spent gaping was proportionally reduced according to the saline concentration; (V) over dot(O2) was also decreased after salt loading. Thermographic images revealed lower head than body surface temperatures during gaping; however this difference was inhibited after salt loading. Our data suggest that EWL/(V) over dot(O2) is raised during gaping, possibly contributing to an increase in heat transfer away from the lizard, and playing a role in head or brain cooling.
Resumo:
Water-miscible ionic liquids (ILs) may be salted out using kosmotropic salts such as potassium phosphate (K3PO4) to form salt-salt aqueous biphasic systems (ABS). The effect of temperature on these systems has been studied using phase diagrams and it is observed that the degree of binodal shift decreases (requiring lower IL and kosmotropic salt concentrations) with the increase of temperature following the trend [C(4)mim]Cl > [C(4)py]Cl > [C(4)mmim] Cl > [N-4444]Cl. This trend can be correlated with the decreasing hydrogen bonding abilities of each salt. The phase behavior was also interpreted on the basis of critical solution temperature behavior of pure aqueous ionic liquid solutions. Additionally, the distribution of alcohols in these systems was studied as a function of temperature and it was found that the distribution ratios did not change with changes in temperature. The Gibbs energy of transfer of a methylene group in these systems and correlation to tie-line length was also determined. It was concluded that while the miscibility of alcohols increases in the ILs with increasing temperature, phase divergence in the aqueous biphasic system decreases, and thus these competing forces tend to cancel each other out for small polar molecules. A comparison is provided for the response to temperature in the currently studied salt-salt systems and analogous ABS formed by the addition of hydrophilic polymers to kosmotropic salts (polymer-salt) or other polymers (polymer-polymer).
Resumo:
Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [C-14]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [C-14]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains (C-14 atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosiiy of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.