911 resultados para SUPRAMOLECULAR GELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermoresponsive, supramolecular nanocomposite has been prepared by the addition of pyrenyl functionalized gold nanoparticles (AuNPs) to a polydiimide that contains receptor residues designed to form defined complexes with pyrene. The novel pyrenyl-functionalized AuNPs (P-AuNPs) were characterized by transmission electron microscopy, with surface functionalization confirmed by infrared and UV–visible spectroscopic analyses. Mixing solutions of the P-AuNPs and a π-electron-deficient polydiimide resulted in the formation of electronically complementary, chain-folded and π–π-stacked complexes, so affording a new supramolecular nanocomposite network which precipitated from solution. The P-AuNPs bind to the polydiimide via π–π stacking interactions to create supramolecular cross-links. UV–visible spectroscopic analysis confirmed the thermally reversible nature of the complexation process, and transmission electron microscopy (TEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC) were used to characterize the supramolecular-nanocomposite material. The supramolecular polymer network is insoluble at room temperature, yet may be dissolved at temperatures above 60 °C. The thermal reversibility of this system is maintained over five heat/cool cycles without diminishment of the network characteristics. In contrast to the individual components, the nanocomposite formed self-supporting films, demonstrating the benefit of the supramolecular network in terms of mechanical properties. Control experiments probing the interactions between a model diimide compound that can also form a π-stacked complex with the π-electron rich pyrene units on P-AuNPs showed that, while complexation was readily apparent, precipitation did not occur because a supramolecular cross-linked network system could not be formed with this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new Mn(II) coordination compounds {[Mn(NCNCN)2(azpy)]·0.5azpy}n (1), {[Mn(NCS)2(azpy)(CH3OH)2]·azpy}n (2), and [Mn(azpy)2(H2O)4][Mn(azpy)(H2O)5]·4PF6·H2O·5.5azpy (3) (where azpy = 4,4'-azobis-(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest pi center dot center dot center dot pi. and C-H center dot center dot center dot N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (ID) chains of centrosymmetric [Mn(NCS)(2)(CH3OH)(2)} units which form a 2D porous sheet via a CH3 center dot center dot center dot pi supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist pi center dot center dot center dot pi, anion center dot center dot center dot pi, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new phenylmercury(II) and one mercury(II) dithiocarbamate complexes viz. PhHg S2CN(PyCH2) Bz (1), PhHg S2CN(PyCH2)CH3 (2), PhHg S2CN(Bz)CH3 (3), and [Hg (NCS2(PyCH2)Bz)(2)] (4) (Py = pyridine; Bz = benzyl) have been synthesized and characterized by elemental analyses, IR, electronic absorption, H-1 and C-13 NMR spectroscopy. The crystal structures of 1, 2 and 3 showed a linear S-Hg-C core at the centre of the molecule, in which the metal atom is bound to the sulfur atom of the dithiocarbamate ligand and a carbon atom of the aromatic ring. In contrast the crystal structure of 4 showed a linear S-Hg-S core at the Hg(II) centre of the molecule. Weak intermolecular Hg center dot center dot center dot N (Py) interactions link molecules into a linear chain in the case of 1, whereas chains of dimers are formed in 2 through intermolecular Hg center dot center dot center dot N (Py) and Hg center dot center dot center dot S interactions. 3 forms a conventional face-to-edge dimeric structure through intermolecular Hg center dot center dot center dot S secondary bonding and 4 forms a linear chain of dimers through face-to-face Hg center dot center dot center dot S secondary bonding. In order to elucidate the nature of these secondary bonding interactions and the electronic absorption spectra of the complexes, ab initio quantum chemical calculations at the MP2 level and density functional theory calculations were carried out for 1-3. Complexes 1 and 2 exhibited photoluminescent properties in the solid state as well as in the solution phase. Studies indicate that Hg center dot center dot center dot S interactions decrease and Hg center dot center dot center dot N interactions increase the chances of photoluminescence in the solid phase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, healable, supramolecular nanocomposite material has been developed and evaluated. The material comprises a blend of three components: a pyrene-functionalized polyamide, a polydiimide and pyrenefunctionalized gold nanoparticles (P-AuNPs). The polymeric components interact by forming well-defined p–p stacked complexes between p-electron rich pyrenyl residues and p-electron deficient polydiimide residues. Solution studies in the mixed solvent chloroform–hexafluoroisopropanol (6 : 1, v/v) show that mixing the three components (each of which is soluble in isolation), results in the precipitation of a supramolecular, polymer nanocomposite network. The precipitate thus formed can be re-dissolved on heating, with the thermoreversible dissolution/precipitation procedure repeatable over at least 5 cycles. Robust, self-supporting composite films containing up to 15 wt% P-AuNPs could be cast from 2,2,2- trichloroethanol. Addition of as little as 1.25 wt% P-AuNPs resulted in significantly enhanced mechanical properties compared to the supramolecular blend without nanoparticles. The nanocomposites showed a linear increase in both tensile moduli and ultimate tensile strength with increasing P-AuNP content. All compositions up to 10 wt% P-AuNPs exhibited essentially quantitative healing efficiencies. Control experiments on an analogous nanocomposite material containing dodecylamine-functionalized AuNPs (5 wt%) exhibited a tensile modulus approximately half that of the corresponding nanocomposite that incorporated 5 wt% pyrene functionalized-AuNPs, clearly demonstrating the importance of the designed interactions between the gold filler and the supramolecular polymer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This mini-review details the recent development of self-healing and mendable polymeric materials which take advantage of the reversible characteristics of non-covalent interactions during their physical recovery process. Supramolecular polymer systems which undergo spontaneous (autonomous) healing, as well as those which require external stimuli to initiate the healing process (healable/mendable), are introduced and discussed. Supramolecular polymers offer key advantages over alternative approaches, as these materials can typically withstand multiple healing cycles without substantial loss of performance, as a consequence of the highly directional and fully reversible non-covalent interactions present within the polymer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probiotic bacteria have gained popularity as a defence against disorders of the bowel. However, the acid sensitivity of these cells results in a loss of viability during gastric passage and, consequently, a loss of efficacy. Probiotic treatment can be supplemented using ‘prebiotics’, which are carbohydrates fermented specifically by probiotic cells in the body. This combination of probiotic and prebiotic is termed a ‘synbiotic’. Within this article a multiparticulate dosage form has been developed, consisting of poly(d,l-lactic-co-glycolic acid) (PLGA) microcapsules containing prebiotic Bimuno™ incorporated into an alginate–chitosan matrix containing probiotic Bifidobacterium breve. The aim of this multiparticulate was that, in vivo, the probiotic would be protected against gastric acid and the release of the prebiotic would occur in the distal colon. After microscopic investigation, this synbiotic multiparticulate was shown to control the release of the prebiotic during in vitro gastrointestinal transit, with the release of galacto-oligosaccharides (GOS) initially occurred over 6 h, but with a triphasic release pattern giving further release over 288 h. Encapsulation of B. breve in multiparticulates resulted in a survival of 8.0 ± 0.3 log CFU/mL cells in acid, an improvement over alginate–chitosan microencapsulation of 1.4 log CFU/mL. This was attributed to increased hydrophobicity by the incorporation of PLGA particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers with the ability to heal themselves could provide access to materials with extended lifetimes in a wide range of applications such as surface coatings, automotive components and aerospace composites. Here we describe the synthesis and characterisation of two novel, stimuli-responsive, supramolecular polymer blends based on π-electron-rich pyrenyl residues and π-electron-deficient, chain-folding aromatic diimides that interact through complementary π–π stacking interactions. Different degrees of supramolecular “cross-linking” were achieved by use of divalent or trivalent poly(ethylene glycol)-based polymers featuring pyrenyl end-groups, blended with a known diimide–ether copolymer. The mechanical properties of the resulting polymer blends revealed that higher degrees of supramolecular “cross-link density” yield materials with enhanced mechanical properties, such as increased tensile modulus, modulus of toughness, elasticity and yield point. After a number of break/heal cycles, these materials were found to retain the characteristics of the pristine polymer blend, and this new approach thus offers a simple route to mechanically robust yet healable materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of small bioactive peptide motifs within robust hydrogels constitutes a facile procedure to chemically functionalise cell and tissue scaffolds. In this study, a novel approach to utilise Fmoc-linked peptide amphiphiles comprising the bio-functional cell-adhesion RGDS motif within biomimetic collagen gels was developed. The composite scaffolds thus created were shown to maintain the mechanical properties of the collagen gel while presenting additional bio-activity. In particular, these materials enhanced the adhesion and proliferation of viable human corneal stromal fibroblasts by 300% compared to nonfunctionalised gels. Furthermore, the incorporation of Fmoc-RGDS nanostructures within the collagen matrix significantly suppressed gel shrinkage resulting from the contractile action of encapsulated fibroblasts once activated by serum proteins. These mechanical and biological properties demonstrate that the incorporation of peptide amphiphiles provides a suitable and easy method to circumvent specific biomaterial limitations, such as cell-derived shrinkage, for improved performance in tissue engineering and regenerative medicine applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-component, supramolecular polymer blend has been designed using a novel π-electron rich bisperylene- terminated polyether. This polymer is able to self-assemble through electronically complementary π–π stacking interactions with a π-electron-deficient chain-folding polydiimide to afford thermally healable polymer blends. Model compounds were developed to assess the suitability of the deep green complexes formed between perylene residues and chain-folding bis-diimides for use in polymer blends. The polymer blends thus synthesised were elastomeric in nature and demonstrated healable properties as demonstrated by scanning electron microscopy. Healing was observed to occur rapidly at ca. 75 degC, and excellent healing efficiencies were found by tensometric and rheometric analyses. These tuneable, stimuli-responsive, supramolecular polymer blends are compared to related healable blends featuring pyrene-terminated oligomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blending with a hydrogen-bonding supramolecular polymer is shown to be a successful novel strategy to induce microphase-separation in the melt of a Pluronic polyether block copolymer. The supramolecular polymer is a polybutadiene derivative with urea–urethane end caps. Microphase separation is analysed using small-angle X-ray scattering and its influence on the macroscopic rheological properties is analysed. FTIR spectroscopy provides a detailed picture of the inter-molecular interactions between the polymer chains that induces conformational changes leading to microphase separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis and characterization of a healable, elastomeric shape recovery supramolecular polyurethane whose properties result from self-complementary π−π stacking and hydrogen bonding interactions plus phase separation. ESEM analysis and photographic images have revealed that this material can heal at 45 °C in 15 min to recover the mechanical properties of the pristine material with healing efficiencies >99%. This supramolecular polyurethane is also able to recover an applied strain of 25% within 5 min of release of the load.