980 resultados para STRESS MYOCARDIAL PERFUSION SCINTIGRAPHY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury whilst recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, whilst maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size and permeability decreased, whilst computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (~45% to ~86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the marked changes in length of hospital stay and the number of CAB procedures being performed, it is essential that health professionals are aware of the potential impact these changes could have on the spouses of patients who have undergone CAB surgery. Results from numerous quantitative studies suggest that spouses of patients undergoing CAB surgery experience both physical and emotional stress before and after their partners surgery. While such studies have contributed to our understanding, they fail to capture the qualitative experience of what it is like to be a spouse of a partner who has undergone CAB surgery, specifically in the context of changes in the length of hospital stay. The objective of this study was to describe the experience of spouses of patients who had recently undergone CAB surgery. This study utilised a qualitative methodology and was guided by Husserl's phenomenological approach. Data was obtained from four participants by in depth open ended interviews. This study has implications for all health professionals involved in the care of patients and their families undergoing CAB surgery. If health professionals are to provide holistic care, they need to understand more fully the qualitative experience of spouses of critically ill patients. The purpose of this study was to describe the experience of spouses whose partner's had suffered an acute myocardial infarction (MI). The study was guided by a phenomenological approach. This qualitative type of study is new to nursing inquiry, therefore this investigation creates links with understanding the notion of psychosocial nursing processes with the leading cause of death in Australia. Literature concerning the spouses of myocardial infarction patients has predominantly employed quantitative methods, as such results have centred on structured data collection, and categorised outcomes. Such methods have failed to capture the insight of what it is like to be a spouse of a patient who has had an MI. In-depth interviews were conducted with three participants (2 females and 1 male) about their experiences. The major findings of the study were categorised under the headings of uncertainty, emotional turmoil, support information and lifestyle change. Conclusions suggest that spouses are neglected by health professionals and they require as much psychosocial support as their partner in terms of cardiac discharge planning. Spouses need to be granted special consideration, as they progress through a grieving and readjustment process in coming to terms with: (1) the need to support and care for their partner, (2) changes in their roles and (3) adjustments to their current lifestyles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atherosclerosis is the main underlying pathology of coronary heart disease. Coronary heart disease is a serious health problem in Finland, and it is the leading cause of morbidity and mortality in industrialized countries. Psychological stress correlates with coronary heart disease events – myocardial infarction and sudden death, which are the most common clinical syndromes of atherosclerotic narrowing of arteries. The present series of studies examines the interaction between stress and endothelial function in relation to atherosclerosis. The study also aims to give new information on the mechanisms through which stress has its effect on atherosclerosis progression, focusing on possible relations between psychological stress and the functioning of the endothelium. Our project is based on data from one of the largest national epidemiological studies, the Cardiovascular Risk in Young Finns study, which has monitored the development of risk factors for coronary heart disease in 3596 young adults since 1980. The present study combines experimental stress research with epidemiology and uses an advanced method for examining atherosclerosis development in healthy subjects (intima-media thickness ultrasound measurement). The physiological parameters used were heart rate, respiratory sinus arrhythmia and pre-ejection period. Chronic stress was assessed by vital exhaustion. The ultrasound measurements that served as the indexes of preclinical atherosclerosis were carotid intima-media thickness, brachial flow-mediated dilatation and carotid artery compliance. The effects of cardiovascular risk factors found to be important were taken into account: serum cholesterols level, triglyceride level, serum insulin level and systolic and diastolic blood pressure. There were 69, 1596, 81 and 1721 participants in studies I-IV, respectively. The results showed that both chronic and acute stress may exert an effect on atherosclerosis in subjects with impaired endothelial responses. The findings are consistent with the idea that risk factors are more harmful if the endothelium is not working properly. Chronic stress was found to be a risk if it has resulted in ineffective cardiac stress reactivity or delayed recovery. Men were shown to be at increased risk for atherosclerotic progression in early life, which suggests men’s decreased stress coping ability in relation to stressful psychosocial coronary risk factors. Autonomic imbalance may be the common mechanism of the stress influence on atherosclerosis development. The results of the present study contain background information for the identification the first stages of atherosclerosis, and they may be useful for preventive medicine programs for young adults and could help to improve cardiovascular health in Finland as well as in other countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart failure is a common, severe, and progressive condition associated with high mortality and morbidity. Because of population-aging in the coming decades, heart failure is estimated to reach epidemic proportions. Current medical and surgical treatments have reduced mortality, but the prognosis for patients has remained poor. Transplantation of skeletal myoblasts has raised hope of regenerating the failing heart and compensating for lost cardiac contractile tissue. In the present work, we studied epicardial transplantation of tissue-engineered myoblast sheets for treatment of heart failure. We employed a rat model of myocardial infarction-induced acute and chronic heart failure by left anterior descending coronary artery ligation. We then transplanted myoblast sheets genetically modified to resist cell death after transplantation by expressing antiapoptotic gene bcl2. In addition, we evaluated the regenerative capacity of myoblast sheets expressing the cardioprotective cytokine hepatocyte growth factor in a rat chronic heart failure model. Furthermore, we utilized in vitro cardiomyocyte and endothelial cell culture models as well as microarray gene expression analysis to elucidate molecular mechanisms mediating the therapeutic effects of myoblast sheet transplantation. Our results demonstrate that Bcl2-expression prolonged myoblast sheet survival in rat hearts after transplantation and induced secretion of cardioprotective, proangiogenic cytokines. After acute myocardial infarction, these sheets attenuated left ventricular dysfunction and myocardial damage, and they induced therapeutic angiogenesis. In the chronic heart failure model, inhibition of graft apoptosis by Bcl-2 improved cardiac function, supported survival of cardiomyocytes in the infarcted area, and induced angiogenesis in a vascular endothelial growth factor receptor 1- and 2-dependent mechanism. Hepatocyte growth factor-secreting myoblast sheets further enhanced the angiogenic efficacy of myoblast sheet therapy. Moreover, myoblast-secreted paracrine factors protected cardiomyocytes against oxidative stress in an epidermal growth factor receptor- and c-Met dependent manner. This protection was associated with induction of antioxidative genes and activation of the unfolded protein response. Our results provide evidence that inhibiting myoblast sheet apoptosis can enhance the sheets efficacy for treating heart failure after acute and chronic myocardial infarction. Furthermore, we show that myoblast sheets can serve as vehicles for delivery of growth factors, and induce therapeutic angiogenesis in the chronically ischemic heart. Finally, myoblasts induce, in a paracine manner, a cardiomyocyte-protective response against oxidative stress. Our study elucidates novel mechanisms of myoblast transplantation therapy, and suggests effective means to improve this therapy for the benefit of the heart failure patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR) = 1.47, 95% confidence interval (CI) = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs6318 with traditional risk factors or conventional markers of atherosclerotic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background— Depression is a risk factor for myocardial infarction (MI). Selective serotonin reuptake inhibitors reduce this risk. The site of action is the serotonin transporter (SLC6A4), which is expressed in brain and blood cells. A functional polymorphism in the promoter region of the SLC6A4 gene has been described. This polymorphism may be associated with the risk of MI. Methods and Results— The SLC6A4 polymorphism has been investigated by polymerase chain reaction in 671 male patients with MI and in 688 controls from the Etude Cas-Témoins de l’Infarctus du Myocarde (ECTIM) multicentric study. Percentages for LL, LS, and SS genotypes were 35.5%, 45.4%, and 19.1%, respectively, for cases versus 28.1%, 49.1%, and 22.8%, respectively, for controls. S allele frequency was 41.8% and 47.4% for cases and controls, respectively. After adjustment for age and center by using multivariable logistic regression, the odds ratio for MI associated with the LL genotype was 1.40 (95% CI 1.11 to 1.76, P=0.0047). Conclusions— The LL genotype of the SLC6A4 polymorphism is associated with a higher risk of MI. This could be attributable to the effect of the polymorphism on serotonin-mediated platelet activation or smooth muscle cell proliferation or on other risk factors, such as depression or response to stress

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficient trophoblast invasion and spiral artery remodeling are associated with pregnancy complications such as pre-eclampsia (PE) and fetal growth restriction (FGR). Using a model in which pregnant Wistar rats are given daily, low-dose, injections of bacterial lipopolysaccharide (LPS; 10 – 40 µg/kg) on gestational days (GD) 13.5 – 16.5, our group has shown that abnormal maternal inflammation is causally linked to shallow trophoblast invasion, deficient spiral artery remodeling, and altered utero-placental hemodynamics leading to FGR/PE; these alterations were shown to be mediated by TNF-a. The present research evaluated certain consequences of decreased placental perfusion; this was accomplished by examining placental alterations indicative of decreased placental perfusion. Additionally, the role of glyceryl trinitrate (GTN) was determined as a potential therapeutic to prevent the consequences of decreased placental perfusion. Results indicated that dams experiencing heightened maternal inflammation showed significantly greater expression of hypoxia-inducible factor-1a (HIF-1a) and nitrotyrosine, both of which are markers of decreased perfusion and oxidative/nitrosative stress. Contrary to expectations, inflammation did not appear to affect nitric oxide (NO) bioavailability, as revealed by a lack of change in placental or plasma levels of cyclic guanosine monophosphate (cGMP). However, continuous transdermal administration of GTN (25 µg/hr) on GD 12.5 – 16.5 prevented the accumulation of HIF-1a and nitrotyrosine in placentas from LPS-treated rats. These results support the concept that maternal inflammation contributes to placental hypoxia and oxidative/nitrosative stress. Additionally, they indicate that GTN has potential applications in the treatment and/or prevention of pregnancy complications associated with abnormal maternal inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress plays an important role in the development of cardiac remodeling after myocardial infarction (MI), but the sources of oxidative stress remain unclear. We investigated the role of Nox2-containing reduced nicotinamide-adenine dinucleotide phosphate oxidase in the development of cardiac remodeling after MI. Adult Nox2(-/-) and matched wild-type (WT) mice were subjected to coronary artery ligation and studied 4 weeks later. Infarct size after MI was similar in Nox2(-/-) and WT mice. Nox2(-/-) mice exhibited significantly less left ventricular (LV) cavity dilatation and dysfunction after MI than WT mice (eg, echocardiographic LV end-diastolic volume: 75.7+/-5.8 versus 112.4+/-12.3 microL; ejection fraction: 41.6+/-3.7 versus 32.9+/-3.2%; both P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIMS:
Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of the vasodilator peptide, adrenomedullin (AM) and its receptors is augmented in cardiomyocytes, indicating that the myocardial AM system may be activated in response to pressure loading and ischemic insult to serve a counter-regulatory, cardio-protective role. The study examined the hypothesis that oxidative stress and hypertrophic remodeling in NO-deficient cardiomyocytes are attenuated by adenoviral vector-mediated delivery of the human adrenomedullin (hAM) gene in vivo.

METHODS:
The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 15mg . kg(-1) . day(-1)) was given to rats for 4 weeks following systemic administration via the tail vein of a single injection of either adenovirus harbouring hAM cDNA under the control of the cytomegalovirus promoter-enhancer (Ad.CMV-hAM-4F2), or for comparison, adenovirus alone (Ad.Null) or saline. Cardiomyocytes were subsequently isolated for assessment of the influence of each intervention on parameters of oxidative stress and hypertrophic remodelling.

RESULTS: Cardiomyocyte expression of the transgene persisted for > or =4 weeks following systemic administration of adenoviral vector. In L-NAME treated rats, relative to Ad.Null or saline administration, Ad.CMV-hAM-4F2 (i) reduced augmented cardiomyocyte membrane protein oxidation and mRNA expression of pro-oxidant (p22phox) and anti-oxidant (SOD-3, GPx) genes; (ii) attenuated increased cardiomyocyte width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP) genes; (iii) did not attenuate hypertension.

CONCLUSIONS: Adenoviral vector mediated delivery of hAM resulted in attenuation of myocardial oxidative stress and hypertrophic remodelling in the absence of blood pressure reduction in this model of chronic NO-deficiency. These findings are consistent with a direct cardio-protective action in the myocardium of locally-derived hAM which is not dependant on NO generation.