980 resultados para STEEL PRODUCTION
Resumo:
The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania)
Resumo:
At present, in large precast concrete enterprises, the management over precast concrete component has been chaotic. Most enterprises take labor-intensive manual input method, which is time consuming and laborious, and error-prone. Some other slightly better enterprises choose to manage through bar-code or printing serial number manually. However, on one hand, this is also labor-intensive, on the other hand, this method is limited by external environment, making the serial number blur or even lost, and also causes a big problem on production traceability and quality accountability. Therefore, to realize the enterprise’s own rapid development and cater to the needs of the time, to achieve the automated production management has been a big problem for a modern enterprise. In order to solve the problem, inefficiency in production and traceability of the products, this thesis try to introduce RFID technology into the production of PHC tubular pile. By designing a production management system of precast concrete components, the enterprise will achieve the control of the entire production process, and realize the informatization of enterprise production management. RFID technology has been widely used in many fields like entrance control, charge management, logistics and so on. RFID technology will adopt passive RFID tag, which is waterproof, shockproof, anti-interference, so it’s suitable for the actual working environment. The tag will be bound to the precast component steel cage (the structure of the PHC tubular pile before the concrete placement), which means each PHC tubular pile will have a unique ID number. Then according to the production procedure, the precast component will be performed with a series of actions, put the steel cage into the mold, mold clamping, pouring concrete (feed), stretching, centrifugalizing, maintenance, mold removing, welding splice. In every session of the procedure, the information of the precast components can be read through a RFID reader. Using a portable smart device connected to the database, the user can check, inquire and management the production information conveniently. Also, the system can trace the production parameter and the person in charge, realize the traceability of the information. This system can overcome the disadvantages in precast components manufacturers, like inefficiency, error-prone, time consuming, labor intensity, low information relevance and so on. This system can help to improve the production management efficiency, and can produce a good economic and social benefits, so, this system has a certain practical value.
Resumo:
Dissertação de Mestrado, Engenharia Civil, Especialização em Estruturas, Instituto Superior de Engenharia, Universidade do Algarve, 2016
Resumo:
Shearing is the process where sheet metal is mechanically cut between two tools. Various shearing technologies are commonly used in the sheet metal industry, for example, in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material. The constant development of sheet metals toward higher strength and formability leads to increased forces on the shearing equipment and tools. Shearing of new sheet materials imply new suitable shearing parameters. Investigations of the shearing parameters through live tests in the production are expensive and separate experiments are time consuming and requires specialized equipment. Studies involving a large number of parameters and coupled effects are therefore preferably performed by finite element based simulations. Accurate experimental data is still a prerequisite to validate such simulations. There is, however, a shortage of accurate experimental data to validate such simulations. In industrial shearing processes, measured forces are always larger than the actual forces acting on the sheet, due to friction losses. Shearing also generates a force that attempts to separate the two tools with changed shearing conditions through increased clearance between the tools as result. Tool clearance is also the most common shearing parameter to adjust, depending on material grade and sheet thickness, to moderate the required force and to control the final sheared edge geometry. In this work, an experimental procedure that provides a stable tool clearance together with accurate measurements of tool forces and tool displacements, was designed, built and evaluated. Important shearing parameters and demands on the experimental set-up were identified in a sensitivity analysis performed with finite element simulations under the assumption of plane strain. With respect to large tool clearance stability and accurate force measurements, a symmetric experiment with two simultaneous shears and internal balancing of forces attempting to separate the tools was constructed. Steel sheets of different strength levels were sheared using the above mentioned experimental set-up, with various tool clearances, sheet clamping and rake angles. Results showed that tool penetration before fracture decreased with increased material strength. When one side of the sheet was left unclamped and free to move, the required shearing force decreased but instead the force attempting to separate the two tools increased. Further, the maximum shearing force decreased and the rollover increased with increased tool clearance. Digital image correlation was applied to measure strains on the sheet surface. The obtained strain fields, together with a material model, were used to compute the stress state in the sheet. A comparison, up to crack initiation, of these experimental results with corresponding results from finite element simulations in three dimensions and at a plane strain approximation showed that effective strains on the surface are representative also for the bulk material. A simple model was successfully applied to calculate the tool forces in shearing with angled tools from forces measured with parallel tools. These results suggest that, with respect to tool forces, a plane strain approximation is valid also at angled tools, at least for small rake angles. In general terms, this study provide a stable symmetric experimental set-up with internal balancing of lateral forces, for accurate measurements of tool forces, tool displacements, and sheet deformations, to study the effects of important shearing parameters. The results give further insight to the strain and stress conditions at crack initiation during shearing, and can also be used to validate models of the shearing process.