128 resultados para SRB
Resumo:
A tecnologia anaeróbia tem sido utilizada com sucesso no tratamento de água residuária contendo compostos fenólicos. Recentes pesquisas incluem tais compostos entre aqueles que podem ser degradados através desse processo. O objetivo desse trabalho foi avaliar a degradação do fenol em diferentes condições nutricionais, com ênfase na redução do sulfato. Os experimentos foram realizados com meio de cultura específico para esses microrganismos anaeróbios. Foram realizados ensaios de degradação em reatores em batelada alimentados nas seguintes condições: (1) fenol e sulfato, a diferentes concentrações, com inóculo previamente enriquecido; (2) fenol, sulfato e co-substratos e; (3) fenol, sulfato e extrato de levedura. Todos os ensaios foram realizados em temperatura de 30 graus Celsius, sob agitação de 150 rpm. Foi avaliado o consumo de fenol e sulfato e, produção de metano, em função do tempo, para diferentes concentrações iniciais de fenol e sulfato. Nos ensaios com reatores alimentados com fenol (329,3 mg/l); fenol (307,3 mg/l) e sulfato (160 mg/l); fenol (322.3 mg/l), sulfato (160 mg/l) e lactato (478,16 mg/l); fenol (332,1 mg/l), sulfato (150 mg/l) e etanol (129,76 mg/l), a remoção foi de, respectivamente, 99,8%, 98,2%, 98,8% e 98,8%. Os reatores alimentados com fenol (239,7 mg/l) obtiveram 100% de eficiência na degradação em apenas 11 dias e, os reatores alimentados com fenol (234,3 mg/l) e sulfato (162,5 mg/l) e fenol (256,0 mg/l) e sulfato (500 mg/l) tiveram eficiências de degradação de, respectivamente, 98,8% e 99,3% com 17 dias de operação. Tais eficiências foram obtidas pelo acréscimo de extrato de levedura nos reatores, no início dos ensaios. A caracterização morfológica foi realizada através de microscopia óptica. A diversidade microbiana referente aos Domínios Bacteria e Archaea, além do grupo de bactérias redutoras de sulfato foi avaliada através da técnica de PCR DGGE, onde foram observadas alterações nas populações microbianas, em função das condições nutricionais. Para o Domínio Archaea não foram observadas diferenças nos ensaios realizados. Para o Domínio Bacteria e Grupo das BRS essas diferenças foram, mais facilmente, percebidas com relação ao inóculo e entre os diversos reatores. A alteração na diversidade microbiana pode ter sido decorrente da composição do meio que, nesse caso, foi específico para BRS e a composição do inóculo que continha parte previamente adaptada às BRS. Essas condições adequadas puderam propiciar surgimento e desenvolvimento de populações microbianas capazes de degradar fenol, utilizando sulfato.
Resumo:
The Single Resolution Board (SRB) will be responsible for the resolution of banks in the euro area from 1 January 2016. However, the resources of the Single Resolution Fund (SRF) at the disposal of the SRB will only gradually be built up until 2023. This paper provides estimates of the potential financing needs of the SRF, based on the euro area bank resolutions that actually occurred between 2007 and 2014. We find that the SRF would have been asked to put a total amount of about €72 billion into these failing banks, which is more than the target for the SRF (€55 billion) but less than the amount the SRF could draw on, if the ex-post levies are also taken into account. As this sum would have been required over eight years, the broad conclusion is that bridge financing, in addition to the existing alternative funding, would only have been needed in the early years of the transition.
Resumo:
It is generally agreed that a Banking Union should have common or ‘single’ institutions responsible for carrying out three basic functions: supervision, resolution and deposit insurance. So far, however, agreement has been reached in the EU on only the first two of these functions. The Commission has now presented its proposal on how to complete the Banking Union with a European Deposit Insurance Scheme (EDIS). It is an innovative and courageous proposal. It is courageous because it will clearly be very controversial in a number of member states (especially Germany) and it is innovative because it proposes a three-stage process, starting with re-insurance, then switching to co-insurance and finally to full direct insurance of deposits via a ‘single’ Deposit Insurance Fund (DIF). This final stage should be reached in 2024, which is also the date at which the Single Resolution Fund (SRF) will become the only source of financing for bank resolution. The Commission’s proposal calls for integrating the decision-making for EDIS into the decision-making entity for the SRF, namely the existing Single Resolution Board (SRB). This makes sense if one views resolution and deposit insurance as two highly interlinked dimensions of dealing with banks in trouble. In this view the two dimensions should be bundled into one institution – and one suspects that over time the two funds (the SRF and the DIF) could be merged into one. This Policy Brief argues that re-insurance should not be considered as a transitory phase, but could also provide a solution for the long run. ‘Experience rating’ could be used to ensure a proper pricing of risk and to protect the interests of the depositors in countries with safer banking systems. Moreover, EDIS should have a decision-making structure separate from and independent of the SRM, since it has mainly a macroeconomic function.
Resumo:
From the start of 2016, new rules for bank resolution are in place – as spelled out in the Bank Recovery and Resolution Directive (BRRD) – across the EU, and a new authority (the Single Resolution Board, or SRB) is fully operational for resolving all banks in the eurozone. The implementation issues of the new regime are enormous. Banks need to develop recovery plans, and authorities need to create resolution plans as well as set the minimum required amount of own funds and eligible liabilities (MREL) for each bank. But given the diversity in bank structures and instruments at EU and global level, this will be a formidable challenge, above all with respect to internationally active banks. In order to explore ways in which the authorities and banks can meet this challenge, CEPS formed a Task Force composed of senior experts on banking sector reform and chaired by Thomas Huertas, Partner and Chair, EY Global Regulatory Network. This report contains its policy recommendations.
Resumo:
Includes bibliography.
Resumo:
In this study, we investigated the size, submicrometer-scale structure, and aggregation state of ZnS formed by sulfate-reducing bacteria (SRB) in a SRB-dominated biofilm growing on degraded wood in cold (Tsimilar to8degreesC), circumneutral-pH (7.2-8.5) waters draining from an abandoned, carbonate-hosted Pb-Zn mine. High-resolution transmission electron microscope (HRTEM) data reveal that the earliest biologically induced precipitates are crystalline ZnS nanoparticles 1-5 nm in diameter. Although most nanocrystals have the sphalerite structure, nanocrystals of wurtzite are also present, consistent with a predicted size dependence for ZnS phase stability. Nearly all the nanocrystals are concentrated into 1-5 mum diameter spheroidal aggregates that display concentric banding patterns indicative of episodic precipitation and flocculation. Abundant disordered stacking sequences and faceted, porous crystal-aggregate morphologies are consistent with aggregation-driven growth of ZnS nanocrystals prior to and/or during spheroid formation. Spheroids are typically coated by organic polymers or associated with microbial cellular surfaces, and are concentrated roughly into layers within the biofilm. Size, shape, structure, degree of crystallinity, and polymer associations will all impact ZnS solubility, aggregation and coarsening behavior, transport in groundwater, and potential for deposition by sedimentation. Results presented here reveal nanometer- to micrometer-scale attributes of biologically induced ZnS formation likely to be relevant to sequestration via bacterial sulfate reduction (BSR) of other potential contaminant metal(loid)s, such as Pb2+, Cd2+, As3+ and Hg2+, into metal sulfides. The results highlight the importance of basic mineralogical information for accurate prediction and monitoring of long-term contaminant metal mobility and bioavailability in natural and constructed bioremediation systems. Our observations also provoke interesting questions regarding the role of size-dependent phase stability in biomineralization and provide new insights into the origin of submicrometer- to millimeter-scale petrographic features observed in low-temperature sedimentary sulfide ore deposits.
Resumo:
Objective: This paper compares four techniques used to assess change in neuropsychological test scores before and after coronary artery bypass graft surgery (CABG), and includes a rationale for the classification of a patient as overall impaired. Methods: A total of 55 patients were tested before and after surgery on the MicroCog neuropsychological test battery. A matched control group underwent the same testing regime to generate test–retest reliabilities and practice effects. Two techniques designed to assess statistical change were used: the Reliable Change Index (RCI), modified for practice, and the Standardised Regression-based (SRB) technique. These were compared against two fixed cutoff techniques (standard deviation and 20% change methods). Results: The incidence of decline across test scores varied markedly depending on which technique was used to describe change. The SRB method identified more patients as declined on most measures. In comparison, the two fixed cutoff techniques displayed relatively reduced sensitivity in the detection of change. Conclusions: Overall change in an individual can be described provided the investigators choose a rational cutoff based on likely spread of scores due to chance. A cutoff value of ≥20% of test scores used provided acceptable probability based on the number of tests commonly encountered. Investigators must also choose a test battery that minimises shared variance among test scores.
Resumo:
This research concerns the development of coordination and co-governance within three different regeneration programmes within one Midlands city over the period from 1999 to 2002. The New Labour government, in office since 1997, had an agenda for ‘joining-up’ government, part of which has had considerable impact in the area of regeneration policy. Joining-up government encompasses a set of related activities which can include the coordination of policy-making and service delivery. In regeneration, it also includes a commitment to operate through co-governance. Central government and local and regional organisations have sought to put this idea into practice by using what may be referred to as network management processes. Many characteristics of new policies are designed to address the management of networks. Network management is not new in this area, it has developed at least since the early 1990s with the City Challenge and Single Regeneration Budget (SRB) programmes as a way of encouraging more inclusive and effective regeneration interventions. Network management theory suggests that better management can improve decision-making outcomes in complex networks. The theories and concepts are utilised in three case studies as a way of understanding how and why regeneration attempts demonstrate real advances in inter-organisational working at certain times whilst faltering at others. Current cases are compared to the historical case of the original SRB programme as a method of assessing change. The findings suggest that: The use of network management can be identified at all levels of governance. As previous literature has highlighted, central government is the most important actor regarding network structuring. However, it can be argued that network structuring and game management are both practised by central and local actors; Furthermore, all three of the theoretical perspectives within network management (Instrumental, Institutional and Interactive), have been identified within UK regeneration networks. All may have a role to play with no single perspective likely to succeed on its own. Therefore, all could make an important contribution to the understanding of how groups can be brought together to work jointly; The findings support Klijn’s (1997) assertion that the institutional perspective is dominant for understanding network management processes; Instrumentalism continues on all sides, as the acquisition of resources remains the major driver for partnership activity; The level of interaction appears to be low despite the intentions for interactive decision-making; Overall, network management remains partial. Little attention is paid to the issues of accountability or to the institutional structures which can prevent networks from implementing the policies designed by central government, and/or the regional tier.
Resumo:
Multi-problem youth undergoing treatment for substance use problems are at high behavioral risk for exposure to sexually transmitted infections (STIs), including human immunodeficiency virus (HIV). Specific risk factors include childhood adversities such as maltreatment experiences and subsequent forms of psychopathology. The current study used a person-centered analytical approach to examine how childhood maltreatment experiences were related to patterns of psychiatric symptoms and HIV/STI risk behaviors in a sample of adolescents (N = 408) receiving treatment services. Data were collected in face-to-face interviews at two community-based facilities. Descriptive statistics and Latent Profile Analysis (LPA) were used to (a) classify adolescents into groups based on past year psychiatric symptoms, and (b) examine relations between class membership and forms of childhood maltreatment experiences, as well as past year sexual risk behavior (SRB). ^ LPA results indicated significant heterogeneity in psychiatric symptoms among the participants. The three classes generated via the optimal LPA solution included: (a) a low psychiatric symptoms class, (b) a high alcohol symptoms class and (c) a high internalizing symptoms class. Class membership was associated significantly with adolescents’ self-reported scores for childhood sexual abuse and emotional neglect. ANOVAs documented significant differences in mean scores for multiple indices of SRB indices by class membership, demonstrating differential risk for HIV/STI exposure across classes. The two classes characterized by elevated psychiatric symptom profiles and more severe maltreatment histories were at increased behavioral risk for HIV/STI exposure, compared to the low psychiatric symptoms class. The high internalizing symptoms class reported the highest scores for most of the indices of SRB assessed. The heterogeneity of psychiatric symptom patterns documented in the current study has important implications for HIV/STI prevention programs implemented with multi-problem youth. The results highlight complex relations between childhood maltreatment experiences, psychopathology and multiple forms of health risk behavior among adolescents. The results underscore the importance of further integration between substance abuse treatment and HIV/STI risk reduction efforts to improve morbidity and mortality among vulnerable youth. ^
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.
Resumo:
This dissertation evaluated the feasibility of using commercially available immortalized cell lines in building a tissue engineered in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Mouse endothelial cell line and rat astrocyte cell lines purchased from American Type Culture Collections (ATCC) were the building blocks of the co-culture model. An astrocyte derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel in vitro biomimetic basement membrane for the endothelial cells to form endothelial tight junctions. Trans-endothelial electrical resistance (TEER) and solute mass transport studies were engaged to quantitatively evaluate the tight junction formation on the in-vitro BBB models. Immuno-fluorescence microscopy and Western Blot analysis were used to qualitatively verify the in vitro expression of occludin, one of the earliest discovered tight junction proteins. Experimental data from a total of 12 experiments conclusively showed that the novel BBB in vitro co-culture model with the astrocyte derived aECM (CO+aECM) was promising in terms of establishing tight junction formation represented by TEER values, transport profiles and tight junction protein expression when compared with traditional co-culture (CO) model setups and endothelial cells cultured alone. Experimental data were also found to be comparable with several existing in vitro BBB models built from various methods. In vitro colorimetric sulforhodamine B (SRB) assay revealed that the co-cultured samples with aECM resulted in less cell loss on the basal sides of the insert membranes than that from traditional co-culture samples. The novel tissue engineering approach using immortalized cell lines with the addition of aECM was proven to be a relevant alternative to the traditional BBB in vitro modeling.
Resumo:
Owing to an increased risk of aging population and a higher incidence of coronary artery disease (CAD), there is a need for more reliable and safer treatments. Numerous varieties of durable polymer-coated drug eluting stents (DES) are available in the market in order to mitigate in-stent restenosis. However, there are certain issues regarding their usage such as delayed arterial healing, thrombosis, inflammation, toxic corrosion by-products, mechanical stability and degradation. As a result, significant amount of research has to be devoted to the improvement of biodegradable polymer-coated implant materials in an effort to enhance their bioactive response. ^ In this investigation, magneto-electropolished (MEP) and a novel biodegradable polymer coated ternary Nitinol alloys, NiTiTa and NiTiCr were prepared to study their bio and hemocompatibility properties. The initial interaction of a biomaterial with its surroundings is dependent on its surface characteristics such as, composition, corrosion resistance, work of adhesion and morphology. In-vitro corrosion tests such as potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were conducted to determine the coating stability and longevity. In-vitro hemocompatibility studies and HUVEC cell growth was performed to determine their thrombogenic and biocompatibility properties. Critical delamination load of the polymer coated Nitinol alloys was determined using Nano-scratch analysis. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions leached from Nitinol alloys on the viability of HUVEC cells. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), contact angle meter and X-ray diffraction (XRD) were used to characterize the surface of the alloys. ^ MEP treated and polymer coated (PC) Nitinol alloys displayed a corrosion resistant polymer coating as compared to uncoated alloys. MEP and PC has resulted in reduced Ni and Cr ion leaching from NiTi5Cr and subsequently low cytotoxicity. Thrombogenicity tests revealed significantly less platelet adhesion and confluent endothelial cell growth on polymer coated and uncoated ternary MEP Nitinol alloys. Finally, this research addresses the bio and hemocompatibility of MEP + PC ternary Nitinol alloys that could be used to manufacture blood contacting devices such as stents and vascular implants which can lead to lower U.S. healthcare spending.^
Resumo:
Multi-problem youth undergoing treatment for substance use problems are at high behavioral risk for exposure to sexually transmitted infections (STIs), including human immunodeficiency virus (HIV). Specific risk factors include childhood adversities such as maltreatment experiences and subsequent forms of psychopathology. The current study used a person-centered analytical approach to examine how childhood maltreatment experiences were related to patterns of psychiatric symptoms and HIV/STI risk behaviors in a sample of adolescents (N = 408) receiving treatment services. Data were collected in face-to-face interviews at two community-based facilities. Descriptive statistics and Latent Profile Analysis (LPA) were used to (a) classify adolescents into groups based on past year psychiatric symptoms, and (b) examine relations between class membership and forms of childhood maltreatment experiences, as well as past year sexual risk behavior (SRB). LPA results indicated significant heterogeneity in psychiatric symptoms among the participants. The three classes generated via the optimal LPA solution included: (a) a low psychiatric symptoms class, (b) a high alcohol symptoms class and (c) a high internalizing symptoms class. Class membership was associated significantly with adolescents’ self-reported scores for childhood sexual abuse and emotional neglect. ANOVAs documented significant differences in mean scores for multiple indices of SRB indices by class membership, demonstrating differential risk for HIV/STI exposure across classes. The two classes characterized by elevated psychiatric symptom profiles and more severe maltreatment histories were at increased behavioral risk for HIV/STI exposure, compared to the low psychiatric symptoms class. The high internalizing symptoms class reported the highest scores for most of the indices of SRB assessed. The heterogeneity of psychiatric symptom patterns documented in the current study has important implications for HIV/STI prevention programs implemented with multi-problem youth. The results highlight complex relations between childhood maltreatment experiences, psychopathology and multiple forms of health risk behavior among adolescents. The results underscore the importance of further integration between substance abuse treatment and HIV/STI risk reduction efforts to improve morbidity and mortality among vulnerable youth.
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.