962 resultados para SPECIES LOSS
Resumo:
To determine the effect of microbial metabolites on the release of root exudates from perennial ryegrass, seedlings were pulse labelled with [14C]-CO2 in the presence of a range of soil micro-organisms. Microbial inoculants were spatially separated from roots by Millipore membranes so that root infection did not occur. Using this technique, only microbial metabolites affected root exudation. The effect of microbial metabolites on carbon assimilation and distribution and root exudation was determined for 15 microbial species. Assimilation of a pulse label varied by over 3.5 fold, dependent on inoculant. Distribution of the label between roots and shoots also varied with inoculant, but the carbon pool that was most sensitive to inoculation was root exudation. In the absence of a microbial inoculant only 1% of assimilated label was exuded. Inoculation of the microcosms always caused an increase in exudation but the percentage exuded varied greatly, within the range of 3-34%. © 1995 Kluwer Academic Publishers.
Resumo:
Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available.
Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau.
Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities.
Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the calculated abundances of cations and the peak-abundance radius of both cations and neutrals: as the mass-loss rate increases, the peak abundance of cations generally decreases and the peak-abundance radius of all species moves outwards. The effects of varying the envelope expansion velocity and cosmic-ray ionization rate are not as significant.
Resumo:
Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at approximate to 40% of initial species richness. These findings have important implications for the valuation of marine biodiversity.
Resumo:
Several forest species are severely affected by Phytophthora cinnamomi. The contribution of this oomycete to forest decline and dieback has been broadly reported. In particular, it is consensual that it is the causal agent of ink disease in Castanea sativa. It has been associated with the severe decline of Quercus species, namely the Q. suber and Q. ilex dieback in Portugal and Spain, and has been responsible for the infection of numerous native species and crops. This pathogen persists in the soil or on plant material in the form of chlamydospores allowing the infection of living root tissues when environmental conditions are favorable. © Microscopy Society of America 2012.
Resumo:
Thesis (Ph.D.)--University of Washington, 2014
Resumo:
Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2016
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Resumo:
Breeding parameters of Great Cormorants (PkaZac/iOCOfiCLX CCUibo dCUtbo) and Double-crested Cormorants (P. CLU/uXuA CMJhLtllb) were examined at two mixed species colonies at Cape Tryon and Durell Point, Prince Edward Island from 1976 to 1978. Differential access to nests at the two colony sites resulted in more complete demographic data for P. CCUibo than for P. CLUJiituA. In 1911j P. CCtfibo was present at both colonies by 21 March, whereas P. auAAJtuA did not return until 1 April and 16 April at Cape Tryon and Durell Point, respectively. Differences in the arrival chronology by individuals of each species and differences in the time of nest site occupation according to age, are suggested as factors influencing the nest site distribution of P. CXUtbo and P. aiVtituA at Cape Tryon. Forty-eight P. dOJtbo chicks banded at the Durell Point colony between 19 74 and 19 76 returned there to nest as two- to four-year olds in 19 77 and 19 78. Unmarked individuals with clutch-starts in April were likely greater than four years old as all marked two to four-year olds (with one possible exception) in 19 77 and 1978 had clutch-starts in May and June. Seasonal variation in the breeding success of P. dOJibo individuals was examined at Durell Point in 1977. Mean clutch-size, hatching success and fledging success exhibited a seasonal decline. Four- and 5-egg clutches represented the majority (75%) of all P. CCUibo clutches at Durell Point in 1977 and had the highest reproductive success (0.48 and 0.43 chicks fledged per egg laid respectively). Smaller clutches produced small broods with significantly higher chick mortality while larger clutches suffered high egg loss prior to clutch completion.
Resumo:
I examined lists of endangered species from northeastern and midwestern United States to assess the extent to which they were dominated by species considered rare due to their vulnerability to anthropogenic stressors or, instead, by species whose rarity might be explained otherwise. Northeastern states had longer species lists than midwestern states, and more species associated with locally rare prairie habitats. More species at the edge of their geographic range appeared on lists from the Northeast than the Midwest. About 70% of listed species overall have shown either no significant population trend, or increases, at the continental scale, but wetland and prairie species were frequently listed, consistent with the generally acknowledged, widespread loss of these habitats. Curiously, midwestern states tended to list fewer forest species, despite evidence that forest fragmentation there has had strongly deleterious effects on regional bird populations. Overall, species appear to be listed locally for a variety of reasons not necessarily related to their risk of extinction generally, potentially contributing to inefficient distributions of limited resources to deal effectively with species that legitimately require conservation attention. I advocate a continental perspective when listing species locally, and propose enhanced criteria for characterizing species as endangered at the local level.
Resumo:
Annual loss of nests by industrial (nonwoodlot) forest harvesting in Canada was estimated using two avian point-count data sources: (1) the Boreal Avian Monitoring Project (BAM) dataset for provinces operating in this biome and (2) available data summarized for the major (nonboreal) forest regions of British Columbia. Accounting for uncertainty in the proportion of harvest occurring during the breeding season and in avian nesting densities, our estimate ranges from 616 thousand to 2.09 million nests. Estimates of the impact on numbers of individuals recruited into the adult breeding population were made based on the application of survivorship estimates at various stages of the life cycle. Future improvements to this estimate are expected as better and more extensive avian breeding pair density estimates become available and as provincial forestry statistics become more refined, spatially and temporally. The effect of incidental take due to forestry is not uniform and is disproportionately centered in the southern boreal. Those species whose ranges occur primarily in these regions are most at risk for industrial forestry in general and for incidental take in particular. Refinements to the nest loss estimate for industrial forestry in Canada will be achieved primarily through the provision of more accurate estimates of the area of forest harvested annually during the breeding season stratified by forest type and Bird Conservation Region (BCR). A better understanding of survivorship among life-history stages for forest birds would also allow for better modeling of the effect of nest loss on adult recruitment. Finally, models are needed to project legacy effects of forest harvesting on avian populations that take into account forest succession and accompanying cumulative effects of landscape change.
Resumo:
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z ¼ 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z ¼ 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.
Resumo:
The ability to predict the responses of ecological communities and individual species to human-induced environmental change remains a key issue for ecologists and conservation managers alike. Responses are often variable among species within groups making general predictions difficult. One option is to include ecological trait information that might help to disentangle patterns of response and also provide greater understanding of how particular traits link whole clades to their environment. Although this ‘‘trait-guild” approach has been used for single disturbances, the importance of particular traits on general responses to multiple disturbances has not been explored. We used a mixed model analysis of 19 data sets from throughout the world to test the effect of ecological and life-history traits on the responses of bee species to different types of anthropogenic environmental change. These changes included habitat loss, fragmentation, agricultural intensification, pesticides and fire. Individual traits significantly affected bee species responses to different disturbances and several traits were broadly predictive among multiple disturbances. The location of nests – above vs. below ground – significantly affected response to habitat loss, agricultural intensification, tillage regime (within agriculture) and fire. Species that nested above ground were on average more negatively affected by isolation from natural habitat and intensive agricultural land use than were species nesting below ground. In contrast below-ground-nesting species were more negatively affected by tilling than were above-ground nesters. The response of different nesting guilds to fire depended on the time since the burn. Social bee species were more strongly affected by isolation from natural habitat and pesticides than were solitary bee species. Surprisingly, body size did not consistently affect species responses, despite its importance in determining many aspects of individuals’ interaction with their environment. Although synergistic interactions among traits remain to be explored, individual traits can be useful in predicting and understanding responses of related species to global change.
Resumo:
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N-el = 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1,6% loss per generation; N-ev = 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species, We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs
Resumo:
1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.
Resumo:
Seed of 15 species of Brassicaceae were stored hermetically in a genebank (at -5 degrees C to -10 degrees C with c. 3% moisture content) for 40 years. Samples were withdrawn at intervals for germination tests. Many accessions showed an increase in ability to germinate over this period. due to loss in dormancy. Nevertheless, some dormancy remained after 40 years' storage and was broken by pre-applied gibberellic acid. The poorest seed survival occurred in Hormatophylla spinosa. Even in this accession the ability to germinate declined by only 7% between 1966 and 2006. Comparison of seeds from 1966 stored for 40 years with those collected anew in 2006 from the original sampling sites, where possible, showed few differences, other than a tendency (7 of 9 accessions) for the latter to show greater dormancy. These results for hermetic storage at sub-zero temperatures and low moisture contents confirm that long-term seed storage can provide a successful technology for ex situ plant biodiversity conservation.