981 resultados para SPACE-TELESCOPE OBSERVATIONS
Resumo:
We present near-UV transmission spectroscopy of the highly irradiated transiting exoplanet WASP-12b, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The spectra cover three distinct wavelength ranges: NUVA (2539-2580 Å), NUVB (2655-2696 Å), and NUVC (2770-2811 Å). Three independent methods all reveal enhanced transit depths attributable to absorption by resonance lines of metals in the exosphere of WASP-12b. Light curves of total counts in the NUVA and NUVC wavelength ranges show a detection at a 2.5s level. We detect extra absorption in the Mg II ??2800 resonance line cores at the 2.8s level. The NUVA, NUVB, and NUVC light curves imply effective radii of 2.69 ± 0.24 R J , 2.18 ± 0.18 R J , and 2.66 ± 0.22 R J respectively, suggesting the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We detect enhanced transit depths at the wavelengths of resonance lines of neutral sodium, tin, and manganese, and at singly ionized ytterbium, scandium, manganese, aluminum, vanadium, and magnesium. We also find the statistically expected number of anomalous transit depths at wavelengths not associated with any known resonance line. Our data are limited by photon noise, but taken as a whole the results are strong evidence for an extended absorbing exosphere surrounding the planet. The NUVA data exhibit an early ingress, contrary to model expectations; we speculate this could be due to the presence of a disk of previously stripped material.
Resumo:
Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.
Resumo:
Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.
Resumo:
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDs) produced by the interaction of the ejecta Outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDs dust mass reaches a modest 3.0 x 10(-4) M-circle dot by day 230. While dust condensation within a CDs formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDs formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least similar to 8 x 10(-3) M-circle dot. This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.
Resumo:
We present mid-infrared (5.2-15.2 mu m) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co (III)], which matches the blueshift of [Fe (II)] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive Ni-56 give M-56Ni approximate to 0.5 M-circle dot, for SN 2003hv, but only M-56Ni approximate to 0.13-0.22 M-circle dot for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.
Resumo:
We present adaptive optics imaging of the core-collapse supernova (SN) 2009md, which we use together with archival Hubble Space Telescope data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of V=-4.63+0.3-0.4 mag and a colour of V-I= 2.29+0.25-0.39 mag, corresponding to a progenitor luminosity of log L/L?similar to 4.54 +/- 0.19 dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with M= 8.5+6.5-1.5 M?. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of 56Ni ejected in the explosion to be (5.4 +/- 1.3) x 10-3 M? from the luminosity on the radioactive tail, which is in agreement with the low 56Ni masses estimated for other sub-luminous Type IIP SNe. From the light curve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log L/L?similar to 4.35 dex) and model luminosities after the second dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core collapse. This is now the third discovery of a low-mass progenitor star producing a low-energy explosion and low 56Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse SN (78 M?).
Resumo:
We investigate the spatial coincidence of ultraluminous X-ray sources (ULXs) with young massive stellar clusters. In particular, we perform astrometry on Chandra and Hubble Space Telescope (HST) data of two ULXs that are possibly associated with such clusters.
Resumo:
We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.
Resumo:
We identify a source coincident with SN 2009kr in Hubble Space Telescope pre-explosion images. The object appears to be a single point source with an intrinsic color V - I = 1.1 +/- 0.25 and M-V = -7.6 +/- 0.6. If this is a single star, it would be a yellow supergiant of log L/L-circle dot similar to 5.1 and a mass of 15(-4)(+5) M-circle dot. The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early light curve is similar to a Type IIL SN, but the prominent H alpha P-Cygni profiles and the signature of the end of a recombination phase are reminiscent of a Type IIP. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.
Resumo:
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion Hubble Space Telescope (HST) images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/- 4.3, 21.4 +/- 3.5 and 25.1 +/- 1.7 Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the brightest supergiants method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/- 3.4 Mpc. Using this distance, we estimate that the ejected nickel mass in the explosion is 0.046(-0.017)(+0.031) M-circle dot. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of m(F814W) = 24.3 +/- 0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(-2)(+3) M-circle dot. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12M(circle dot) for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd (8(-2)(+4) M circle dot) and 2005cs (9(-2)(+3) M-circle dot).
Resumo:
The progenitor of SN 2005cs, in the galaxy M51, is identified in pre-explosion Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) imaging. Differential astrometry, with post-explosion ACS High Resolution Channel (HRC) F555W images, permitted the identification of the progenitor with an accuracy of 0.006 arcsec. The progenitor was detected in the F814W pre-explosion image with I = 23.3 +/- 0.2, but was below the detection thresholds of the F435W and F555W images, with B
Resumo:
The supernova SN 2001du was discovered in the galaxy NGC 1365 at a distance of 19 +/- 2 Mpc, and is a core-collapse event of Type II-P. Images of this galaxy, of moderate depth, have been taken with the Hubble Space Telescope approximately 6.6 yr before discovery and include the supernova position on the WFPC2 field of view. We have observed the supernova with the WFPC2 to allow accurate differential astrometry of SN 2001du on the pre-explosion frames. As a core-collapse event it is expected that the progenitor was a massive, luminous star. There is a marginal detection (3sigma) of a source close to the supernova position on the pre-discovery V -band frame, but it is not precisely coincident and we do not believe it to be a robust detection of a point source. We conclude that there is no stellar progenitor at the supernova position and derive sensitivity limits of the pre-discovery images that provide an upper mass limit for the progenitor star. We estimate that the progenitor had a mass of less than 15 M-circle dot . We revisit two other nearby Type II-P supernovae that have high-quality pre-explosion images, and refine the upper mass limits for the progenitor stars. Using a new distance determination for SN 1999gi from the expanding photosphere method, we revise the upper mass limit to 12 M-circle dot . We present new HST images of the site of SN 1999em, which validate the use of lower spatial resolution ground-based images in the progenitor studies and use a new Cepheid distance to the galaxy to measure an upper mass limit of 15 M-circle dot for that progenitor. Finally we compile all the direct information available for the progenitors of eight nearby core-collapse supernovae and compare their mass estimates. These are compared with the latest stellar evolutionary models of pre-supernova evolution which have attempted to relate metallicity and mass to the supernovae type. Although this is statistically limited at present, reasonable agreement is already found for the lower-mass events (generally the II-P), but some discrepancies appear at higher masses.
Resumo:
We report the discovery of a short-duration microlensing candidate in the northern field of the POINT-AGAPE pixel lensing survey toward M31. Almost certainly, the source star has been identified on Hubble Space Telescope archival images, allowing us to infer an Einstein crossing time of t(E) = 10.4 days, a maximum magnification of A(max) similar to 18, and a lens-source proper motion mu (rel) > 0.3 mu as day(-1). The event has a projected separation of 8' from the center of M31, beyond the bulk of the stellar lens population. There are three plausible identifications/locations for the lensing object: a massive compact halo object (MACHO) in either M31 or the Milky Way, or a star in the M31 disk. The most probable mass is 0.06 M-. for an M31 MACHO, 0.02 M-. for a Milky Way MACHO, and 0.2 M-. for an M31 stellar lens. While the stellar interpretation is possible, the MACHO interpretation is the most probable for halo fractions above 20%.
Resumo:
The UV spectra of nova-like variables are dominated by emission from the accretion disk, modified by scattering in a wind emanating from the disk. Here, we model the spectra of RW Tri and UX UMa, the only two eclipsing nova-like variables which have been observed with the Hubble Space Telescope in the far-ultraviolet, in an attempt to constrain the geometry and the ionization structure of their winds. Using our Monte Carlo radiative transfer code, we computed spectra for simply parameterized axisymmetric biconical outflow models and were able to find plausible models for both systems. These reproduce the primary UV resonance lines-N v, Si iv, and C iv-in the observed spectra in and out of eclipse. The distribution of these ions in the wind models is similar in both cases as is the extent of the primary scattering regions in which these lines are formed. The inferred mass-loss rates are 6%-8% of the mass accretion rates for the systems. We discuss the implication of our point models for our understanding of accretion disk winds in cataclysmic variables. © 2010. The American Astronomical Society. All rights reserved.
Resumo:
Measurements of ultraviolet line fluxes from Space Telescope Imaging Spectrograph and Far-Ultraviolet Spectroscopic Explorer spectra of the K2-dwarf e Eri are reported. These are used to develop new emission measure distributions and semi-empirical atmospheric models for the chromosphere and lower transition region of the star. These models are the most detailed constructed to date for a main-sequence star other than the Sun. New ionization balance calculations, which account for the effect of finite density on dielectronic recombination rates, are presented for carbon, nitrogen, oxygen and silicon. The results of these calculations are significantly different from the standard Arnaud & Rothenflug ion balance, particularly for alkali-like ions. The new atmospheric models are used to place constraints on possible first ionization potential (FIP)-related abundance variations in the lower atmosphere and to discuss limitations of single-component models for the interpretation of certain optically thick line fluxes. © 2005 RAS.