970 resultados para SNP genotyping
A novel human leucocyte antigen-DRB1 genotyping method based on multiplex primer extension reactions
Resumo:
We have developed and validated a semi-automated fluorescent method of genotyping human leucocyte antigen (HLA)-DRB1 alleles, HLA-DRB1*01-16, by multiplex primer extension reactions. This method is based on the extension of a primer that anneals immediately adjacent to the single-nucleotide polymorphism with fluorescent dideoxynucleotide triphosphates (minisequencing), followed by analysis on an ABI Prism 3700 capillary electrophoresis instrument. The validity of the method was confirmed by genotyping 261 individuals using both this method and polymerase chain reaction with sequence-specific primer (PCR-SSP) or sequencing and by demonstrating Mendelian inheritance of HLA-DRB1 alleles in families. Our method provides a rapid means of performing high-throughput HLA-DRB1 genotyping using only two PCR reactions followed by four multiplex primer extension reactions and PCR-SSP for some allele groups. In this article, we describe the method and discuss its advantages and limitations.
Resumo:
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
Resumo:
Breast cancer incidence and mortality rates are increasing despite our current knowledge on the disease. Ninety-five percent of breast cancer cases correspond to sporadic forms of the disease and are believed to involve an interaction between environmental and genetic determinants. The microRNA 17–92 cluster host gene (MIR17HG) has been shown to regulate expression of genes involved in breast cancer development and progression. Study of single-nucleotide polymorphisms (SNPs) located in this cluster gene could help provide a further understanding of its role in breast cancer. Therefore, this study investigated six SNPs in the MIR17HG using two independent Australian Caucasian case–control populations (GRC-BC and GU-CCQ BB populations) to determine association to breast cancer susceptibility. Genotyping was undertaken using chip-based matrix assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS). We found significant association between rs4824505 and breast cancer at the allelic level in both study cohorts (GRC-BC p = 0.01 and GU-CCQ BB p = 0.03). Furthermore, haplotypic analysis of results from our combined population determined a significant association between rs4824505/rs7336610 and breast cancer susceptibility (p = 5 × 10−4). Our study is the first to show that the A allele of rs4824505 and the AC haplotype of rs4824505/rs7336610 are associated with risk of breast cancer development. However, definitive validation of this finding requires larger cohorts or populations in different ethnical backgrounds. Finally, functional studies of these SNPs could provide a deeper understanding of the role that MIR17HG plays in the pathophysiology of breast cancer.
Resumo:
Background MicroRNAs (miRNAs) are important small non-coding RNA molecules that regulate gene expression in cellular processes related to the pathogenesis of cancer. Genetic variation in miRNA genes could impact their synthesis and cellular effects and single nucleotide polymorphisms (SNPs) are one example of genetic variants studied in relation to breast cancer. Studies aimed at identifying miRNA SNPs (miR-SNPs) associated with breast malignancies could lead towards further understanding of the disease and to develop clinical applications for early diagnosis and treatment. Methods We genotyped a panel of 24 miR-SNPs using multiplex PCR and chip-based matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analysis in two Caucasian breast cancer case control populations (Primary population: 173 cases and 187 controls and secondary population: 679 cases and 301 controls). Association to breast cancer susceptibility was determined using chi-square (X 2 ) and odds ratio (OR) analysis. Results Statistical analysis showed six miR-SNPs to be non-polymorphic and twelve of our selected miR-SNPs to have no association with breast cancer risk. However, we were able to show association between rs353291 (located in MIR145) and the risk of developing breast cancer in two independent case control cohorts (p = 0.041 and p = 0.023). Conclusions Our study is the first to report an association between a miR-SNP in MIR145 and breast cancer risk in individuals of Caucasian background. This finding requires further validation through genotyping of larger cohorts or in individuals of different ethnicities to determine the potential significance of this finding as well as studies aimed to determine functional significance. Keywords: Association analysis; Breast cancer; microRNA; miR-SNPs; MIR145
Resumo:
The principal objective of this study was to determine if Campylobacter jejuni genotyping methods based upon resolution optimised sets of single nucleotide polymorphisms (SNPs) and binary genetic markers were capable of identifying epidemiologically linked clusters of chicken-derived isolates. Eighty-eight C. jejuni isolates of known flaA RFLP type were included in the study. They encompassed three groups of ten isolates that were obtained at the same time and place and possessed the same flaA type. These were regarded as being epidemiologically linked. Twenty-six unlinked C. jejuni flaA type I isolates were included to test the ability of SNP and binary typing to resolve isolates that were not resolved by flaA RFLP. The remaining isolates were of different flaA types. All isolates were typed by real-time PCR interrogation of the resolution optimised sets of SNPs and binary markers. According to each typing method, the three epidemiologically linked clusters were three different clones that were well resolved from the other isolates. The 26 unlinked C. jejuni flaA type I isolates were resolved into 14 SNP-binary types, indicating that flaA typing can be unreliable for revealing epidemiological linkage. Comparison of the data with data from a fully typed set of isolates associated with human infection revealed that abundant lineages in the chicken isolates that were also found in the human isolates belonged to clonal complex (CC) -21 and CC-353, with the usually rare C-353 member ST-524 being especially abundant in the chicken collection. The chicken isolates selected to be diverse according to flaA were also diverse according to SNP and binary typing. It was observed that CC-48 was absent in the chicken isolates, despite being very common in Australian human infection isolates, indicating that this may be a major cause of human disease that is not chicken associated.
Resumo:
The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT™) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT™ markers for sorghum germplasm. Results: A genotyping array was developed representing approximately 12,000 genomic clones using PstI+BanII complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM. Conclusion: We have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.
Resumo:
Background: With the advances in DNA sequencer-based technologies, it has become possible to automate several steps of the genotyping process leading to increased throughput. To efficiently handle the large amounts of genotypic data generated and help with quality control, there is a strong need for a software system that can help with the tracking of samples and capture and management of data at different steps of the process. Such systems, while serving to manage the workflow precisely, also encourage good laboratory practice by standardizing protocols, recording and annotating data from every step of the workflow Results: A laboratory information management system (LIMS) has been designed and implemented at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) that meets the requirements of a moderately high throughput molecular genotyping facility. The application is designed as modules and is simple to learn and use. The application leads the user through each step of the process from starting an experiment to the storing of output data from the genotype detection step with auto-binning of alleles; thus ensuring that every DNA sample is handled in an identical manner and all the necessary data are captured. The application keeps track of DNA samples and generated data. Data entry into the system is through the use of forms for file uploads. The LIMS provides functions to trace back to the electrophoresis gel files or sample source for any genotypic data and for repeating experiments. The LIMS is being presently used for the capture of high throughput SSR (simple-sequence repeat) genotyping data from the legume (chickpea, groundnut and pigeonpea) and cereal (sorghum and millets) crops of importance in the semi-arid tropics. Conclusions: A laboratory information management system is available that has been found useful in the management of microsatellite genotype data in a moderately high throughput genotyping laboratory. The application with source code is freely available for academic users and can be downloaded from http://www.icrisat.org/bt-software-d-lims.htm
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP.flaA HRM analysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 x 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 x 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.
Resumo:
Serum gamma-glutamyl transferase (GGT) activity is a marker of liver disease which is also prospectively associated with the risk of all-cause mortality, cardiovascular disease, type 2 diabetes and cancers. We have discovered novel loci affecting GGT in a genome-wide association study (rs1497406 in an intergenic region of chromosome 1, P = 3.9 x 10(-8); rs944002 in C14orf73 on chromosome 14, P = 4.7 x 10(-13); rs340005 in RORA on chromosome 15, P = 2.4 x 10(-8)), and a highly significant heterogeneity between adult and adolescent results at the GGT1 locus on chromosome 22 (maximum P(HET) = 5.6 x 10(-12) at rs6519520). Pathway analysis of significant and suggestive single-nucleotide polymorphism associations showed significant overlap between genes affecting GGT and those affecting common metabolic and inflammatory diseases, and identified the hepatic nuclear factor (HNF) family as controllers of a network of genes affecting GGT. Our results reinforce the disease associations of GGT and demonstrate that control by the GGT1 locus varies with age.
Resumo:
Quality management strawberry, DNA genotyping.
Resumo:
Previous microarray analyses identified 22 microRNAs (miRNAs) differentially expressed in paired ectopic and eutopic endometrium of women with and without endometriosis. To investigate further the role of these miRNAs in women with endometriosis, we conducted an association study aiming to explore the relationship between endometriosis risk and single-nucleotide polymorphisms (SNPs) in miRNA target sites for these differentially expressed miRNAs. A panel of 102 SNPs in the predicted miRNA binding sites were evaluated for an endometriosis association study and an ingenuity pathway analysis was performed. Fourteen rare variants were identified in this study. We found SNP rs14647 in the Wolf-Hirschhorn syndrome candidate gene1 (WHSC1) 3'UTR (untranslated region) was associated with endometriosis-related infertility presenting an odds ratio of 12.2 (95% confidence interval = 2.4-60.7, P = 9.03 x 10(-5)). SNP haplotype AGG in the solute carrier family 22, member 23 (SLC22A23) 3'UTR was associated with endometriosis-related infertility and more severe disease. With the individual genotyping data, ingenuity pathways analysis identified the tumour necrosis factor and cyclin-dependant kinase inhibitor as major factors in the molecular pathways. Significant associations between WHSC1 alleles and endometriosis-related infertility and SLC22A23 haplotypes and the disease severe stage were identified. These findings may help focus future research on subphenotypes of this disease. Replication studies in independent large sample sets to confirm and characterize the involvement of the gene variation in the pathogenesis of endometriosis are needed.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of approximately 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was approximately 80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.