965 resultados para SMALL-CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Biology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CoNS) are common bacterial colonisers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterised in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intra-species level. On the other hand, biofilm disruption assays demonstrated important inter- and intra-species differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy (CLSM) experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesised that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of the graft presents similar topography to that of native vessels. We have also studied the in vivo behavior of these BC graft in order to further demonstrate their viability. In these preliminary studies, 1 month patency was achieved, with the presence of neo-vessels and endothelial cells on the luminal surface of the graft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. CatD inhibitors could therefore enhance acetate-mediated cancer cell death, presenting a novel strategy for prevention or therapy of CRC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The in vitro growth and multiplication of the erythrocytic stages of Plasmodium falciparum within Saimiri sciureus (squirrel monkey) red blood cells have been studied. Various parameters, such as the origin of the red blood cells and serum supplement, nature of the buffer, influence of the final pH of the medium, role of proteose peptone and glucose addition, were investigated. The selection of the best culture conditions led to the obtention of a reproducible in vitro growth of two parasite cycles in Saimiri erythrocytes, which is an useful achievement for in vitro studies. Our failure to establish a continuous culture line for longer than 19 days, could be explained by a dramatic increasing of osmotic fragility of the Saimiri red blood cells related to their small size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current in vitro fertilisation (IVF) practice requires synchronisation between the¦environment of cultured oocytes and embryos and the surroundings to what they would have¦been exposed to in vivo. Commercial, sequential media follow this requirement but their exact¦composition is not available. We have compared two widely used IVF culture media systems using¦the two choriocarcinoma cell lines JEG-3 and BeWo. The two hormones hCG and progesterone¦were determined in the culture supernatants as endpoints. In both cell lines, but in a more¦pronounced way in JEG-3, progesterone rather than hCG production was stimulated, and a¦higher hormone release was observed in the fertilisation than in the cleavage media. Differences¦between manufacturers were small and did not favour one system over the other. We conclude¦that both sequential media systems can be equally well used in current IVF laboratory practice.¦© 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Statins have beneficial effects in patients after myocardial infarction and at least part of the benefit results from mobilization of marrow endothelial progenitors to repopulate damaged myocardial tissues. This study examines if statins may have the same effect in mobilizing marrow progenitors to be harvested and subsequently used in high-dose chemotherapy with progenitor cell rescue in multiple myeloma. METHODS: From 2006 to 2012, 86 patients with multiple myeloma were mobilized with the use of G-CSF and were retrospectively analyzed. Patients with other malignancies or mobilized with the use of chemotherapy or with plerixafor were excluded. RESULTS: The median age of the patients was 60 years. 72 patients had received one line of chemotherapy and 14 patients two or more lines of chemotherapy. Twenty patients were taking statins at the time of the harvest while 66 patients were not. In the group of patients taking statins the success rate of first leukapheresis (obtaining the target number of 4 × 10(6) CD34+ cells/kg) was 85 % while in the group not taking statins this rate was 63.6 %. Despite the comparatively small number of patients this difference approached statistical significance (χ (2) = 0.07). CONCLUSION: This retrospective analysis of 86 patients shows for the first time a possible benefit of statins for peripheral blood progenitor cells mobilization in patients with multiple myeloma. Larger studies would be required to clarify the issue. If their effectiveness is confirmed, statins could be a safe and cheaper addition to chemotherapy and plerixafor for peripheral hematopoietic stem cell mobilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autophagy or "self eating" is frequently activated in tumor cells treated with chemotherapy or irradiation. Whether autophagy represents a survival mechanism or rather contributes to cell death remains controversial. To address this issue, the role of autophagy in radiosensitive and radioresistant human cancer cell lines in response to gamma-irradiation was examined. We found irradiation-induced accumulation of autophagosomes accompanied by strong mRNA induction of the autophagy-related genes beclin 1, atg3, atg4b, atg4c, atg5, and atg12 in each cell line. Transduction of specific target-siRNAs led to down-regulation of these genes for up to 8 days as shown by reverse transcription-PCR and Western blot analysis. Blockade of each autophagy-related gene was associated with strongly diminished accumulation of autophagosomes after irradiation. As shown by clonogenic survival, the majority of inhibited autophagy-related genes, each alone or combined, resulted in sensitization of resistant carcinoma cells to radiation, whereas untreated resistant cells but not sensitive cells survived better when autophagy was inhibited. Similarly, radiosensitization or the opposite was observed in different sensitive carcinoma cells and upon inhibition of different autophagy genes. Mutant p53 had no effect on accumulation of autophagosomes but slightly increased clonogenic survival, as expected, because mutated p53 protects cells by conferring resistance to apoptosis. In our system, short-time inhibition of autophagy along with radiotherapy lead to enhanced cytotoxicity of radiotherapy in resistant cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY : Ewing's sarcoma is a member of Ewing's family tumors (ESPY) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWSR1 gene with the 3' segment of the ETS family gene FLI-1. The EWSR1-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to ESFT development. However, EWSR1-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are pemissive for its putative oncogenic properties have not been discovered, hampering basic understanding of ESFT biology. Here, we show that EWSR1-FLI-1 alone can transform mouse primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of ESFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWSR1-FLI-1 target genes. Consistent with this finding, we tested the possibility that human mesenchymal stem cells (hMSC) might also provide a permissive cellular environment for EWSR1-FLI-1, and could represent the first adequate primary human cellular background for the oncogenic properties of the fusion protein. Indeed, expression of EWSR1-FLI-1 in human mesenchymal stem cells (hMSC) was not only stably maintained without inhibiting proliferation, but induced a gene expression profile bearing striking similarity to that of ESFT, including genes that are among the highest ESFT discriminators. Expression of EWSR1-FLI-1 in hMSCs may recapitulate the initial steps of Ewing's sarcoma development, allowing identification of genes that play an important role early in its pathogenesis. Among relevant candidate transcripts induced by EWSR1-FL/-1 in hMSC we found the polycomb group gene EZH2 which we show to play a critical role in Ewing's sarcoma growth. These observations provide the first identification of candidate primary cells from which ESFTs originate and suggest that EWSR1-FLI-1 expression may constitute the initiating event in ESFT pathogenesis. Le sarcome d' Ewing est un membre de la famille des tumeurs Ewing (ESFT) et représente la deuxième tumeur maligne solide de l'os et des tissus mous chez les enfants et les jeunes adultes. Cette tumeur est associée dans 85% des cas avec la translocation chromosomique t(11;22)(g24:g12), qui génère la fusion entre le segment 5' du gène EWSR1 avec le segment 3' du gène FLI-1, appartenant à la famille des facteurs de transcription ETS. La protéine de fusion EWSR1-FLI-1 qui en dérive joue le rSle d'un facteur de transcription aberrant, et est supposée contribuer de manière décisive au processus de développement des ESFTs. Néanmoins, l'expression de EWSR1-FLI-1 dans des fibroblastes normaux induit un arrêt de croissance et leur apoptose, et les cellules primaires permissives pour les propriétés oncogéniques attribuées à la translocation n'ont pas encore été identifiées, empêchant la compréhension de la biologie de base du sarcome d'Ewing. Dans ce travail on montre que l'expression de EWSR1-FLI-1 uniquement est capable de transformer des cellules souches mésenchymateuses dérivées de la moelle osseuse de la souris, pour générer des tumeurs qui présentent les caractéristiques du sarcome d' Ewing humain, et notamment une morphologie de petites cellules bleues et rondes, l'expression de marqueurs associés aux ESFTs, une dépendance du facteur de croissance IGF-1, et l'induction ou la répression de nombreux gènes cibles connus de EWSR1-FLI-1. Sur la base de ces observations, on a testé la possibilité que les cellules souches mésenchymateuses humaines (hMSCs) puissent aussi fournir un environnement cellulaire permissif pour EWSR1-FLI-1 ; et représenter le premier background cellulaire humain adéquat pour la manifestation du pouvoir oncogénique de la protéine de fusion. En effet, l'expression de EWSR1-FLI-1 dans des cellules souches mésenchymateuses humaines s'est révélée non seulement maintenue, mais elle a induit un profil d'expression génétique étonnamment similaire à celui des ESFTs humains, incluant les gènes qui ont été rapportés comme étant les plus discriminatifs pour ces tumeurs. L'expression de EWSR1-FLI-1 dans les hMSCs pourrait récapituler les étapes initiales du développement du sarcome d' Ewing, et de ce fait consentir à identifier les gènes qui jouent un rôle crucial dans sa pathogenèse précoce. Parmi les transcrits relevant indults par EWSR1-FL/-9 dans les hMSCs nous avons découvert le gène du groupe des polycomb EZH2, que nous avons par la suite démontré jouer un rôle essentiel dans la croissance du sarcome de Ewing. Ces observations apportent pour la première fois l'identification d'une cellule primaire candidate pour représenter la cellule d'origine des ESFTs, et en même temps suggèrent que l'expression de EWSR1-FLI-1 peut constituer l'événement initial dans la pathogenèse du sarcome d' Ewing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DCs) are professional APCs that have a role in the initiation of adaptive immune responses and tolerance. Among the tolerogenic mechanisms, the expression of the enzyme IDO1 represents an effective tool to generate T regulatory cells. In humans, different DC subsets express IDO1, but less is known about the IDO1-related enzyme IDO2. In this study, we found a different pattern of expression and regulation between IDO1 and IDO2 in human circulating DCs. At the protein level, IDO1 is expressed only in circulating myeloid DCs (mDCs) and is modulated by PGE2, whereas IDO2 is expressed in both mDCs and plasmacytoid DCs and is not modulated by PGE2. In healthy subjects, IDO1 expression requires the presence of PGE2 and needs continuous transcription and translation, whereas IDO2 expression is constitutive, independent from suppressor of cytokine signaling 3 activity. Conversely, in patients suffering from inflammatory arthritis, circulating DCs express both IDO1 and IDO2. At the functional level, both mDCs and plasmacytoid DCs generate T regulatory cells through an IDO1/IDO2-dependent mechanism. We conclude that, in humans, whereas IDO1 provides an additional mechanism of tolerance induced by proinflammatory mediators, IDO2 is stably expressed in steady-state conditions and may contribute to the homeostatic tolerogenic capacity of DCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubule-associated protein 2 (MAP2), a protein linked to the neuronal cytoskeleton in the mature central nervous system (CNS), has recently been identified in glial precursors indicating a potential role during glial development. In the present study, we systematically analyzed the expression of MAP2 in a series of 237 human neuroepithelial tumors including paraffin-embedded specimens and tumor tissue microarrays from oligodendrogliomas, mixed gliomas, astrocytomas, glioblastomas, ependymomas, as well as dysembryoplastic neuroepithelial tumors (DNT), and central neurocytomas. In addition, MAP2-immunoreactive precursor cells were studied in the developing human brain. Three monoclonal antibodies generated against MAP2A-B or MAP2A-D isoforms were used. Variable immunoreactivity for MAP2 could be observed in all gliomas with the exception of ependymomas. Oligodendrogliomas exhibited a consistently strong and distinct pattern of expression characterized by perinuclear cytoplasmic staining without significant process labeling. Tumor cells with immunoreactive bi- or multi-polar processes were mostly encountered in astroglial neoplasms, whereas the small cell component in neurocytomas and DNT was not labeled. These features render MAP2 immunoreactivity a helpful diagnostic tool for the distinction of oligodendrogliomas and other neuroepithelial neoplasms. RT-PCR, Western blot analysis, and in situ hybridization confirmed the expression of MAP2A-C (including the novel MAP2+ 13 transcript) in both oligodendrogliomas and astrocytomas. Double fluorescent laser scanning microscopy showed that GFAP and MAP2 labeled different tumor cell populations. In embryonic human brains, MAP2-immunoreactive glial precursor cells were identified within the subventricular or intermediate zones. These precursors exhibit morphology closely resembling the immunolabeled neoplastic cells observed in glial tumors. Our findings demonstrate MAP2 expression in astrocytic and oligodendroglial neoplasms. The distinct pattern of immunoreactivity in oligodendrogliomas may be useful as a diagnostic tool. Since MAP2 expression occurs transiently in migrating immature glial cells, our findings are in line with an assumed origin of diffuse gliomas from glial precursors.