894 resultados para SISAL CELLULOSE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple approach to sensor development based on encapsulating a probe molecule in a cellulose support followed by regeneration from an ionic liquid solution is demonstrated here by the codissolution of cellulose and 1-(2-pyridylazo)-2-naphthol in 1-butyl-3-methylimidazolium chloride followed by regeneration with water to form strips which exhibit a proportionate (1 : 1) response to Hg(II) in aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose-magnetite composites have been prepared by suspension and dispersion of magnetite particles in a homogenous ionic liquid solution of cellulose, followed by regeneration into water, enabling the preparation of magnetically responsive films, flocs, fibers, or beads. The materials prepared were ferromagnetic, with a small superparamagnetic response, characteristic of the initial magnetite added. X-ray diffraction data indicated that the magnetite particles were chemically unaltered after encapsulation with an average particle size of approximately 25 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of cellulose-polyamine composite films and beads, which provide high loading of primary amines on the surface allowing direct one-step bioconjugation of active species, is reported using an ionic liquid (IL) dissolution and regeneration process. Films and bead architectures were prepared and used as immobilization supports for laccase as a model system demonstrating the applicability of this approach. Performance of these materials, compared to commercially available products, has been assessed using millimeter-sized beads of the composites and the lipase-catalyzed transesterification of ethyl butyrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for introducing enzymes into cellulosic matrixes which can be formed into membranes, films, or beads has been developed using a cellulose-in-ionic-liquid dissolution and regeneration process. Initial results on the formation of thin cellulose films incorporating dispersed laccase indicate that active enzyme-encapsulated films can be prepared using this methodology and that precoating the enzyme with a second. hydrophobic ionic liquid prior to dispersion in the cellulose/ionic liquid solution can provide an increase in enzyme activity relative to that of untreated films, presumably by providing a stabilizing microenvironment for the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method using a combination of ball milling, acid hydrolysis, and ultrasound was developed to obtain a high yield of cellulose nanofibers from flax fibers and microcrystalline cellulose (MCC). Poly(vinyl alcohol) (PVA) nanocomposites were prepared with these additives by a solution-casting technique. The cellulose nanofibers and nanocomposite films that were produced were characterized with Fourier transform infrared spectrometry, X- ray diffraction, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Nanofibers derived from MCC were on average approximately 8 nm in diameter and 111 nm in length. The diameter of the cellulose nanofibers produced from flax fibers was approximately 9 nm, and the length was 141 nm. A significant enhancement of the thermal and mechanical properties was achieved with a small addition of cellulose nanofibers to the polymer matrix. Interestingly, the flax nanofibers had the same reinforcing effects as MCC nanofibers in the matrix. Dynamic mechanical analysis results indicated that the use of cellulose nanofibers (acid hydrolysis) induced a mechanical percolation phenomenon leading to outstanding and unusual mechanical properties through the formation of a rigid filler network in the PVA matrix. X-ray diffraction showed that there was no significant change in the crystallinity of the PVA matrix with the incorporation of cellulose nanofibers. © 2009 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGAs) are micron-sized gas bubbles of 25–30 µm in diameter produced by a high-speed stirrer in a vessel containing dilute surfactant solution. These bubbles, because of their small size, exhibit some colloidal properties. In this work, CGAs were used to separate fine fibres from a lean slurry of cellulosic pulp in a flotation column. The pulp fibres were recovered as foamate from the top. Sodium dodecyl sulphate at a concentration of 2.0 kg/m3 was used as a surfactant to generate the CGAs in a spinning disc apparatus. The results indicated that up to 70% flotation efficiency could be obtained within a short column height of 0.3–0.35 m. This technique can be applied to recover fine cellulosic pulp from paper-machine backwater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different procedures were compared for the preparation of cellulose nanofibres from flax and microcrystalline cellulose (MCC). The first involved a combination of high energy ball milling, acid hydrolysis and ultrasound, whilst the second employed a high pressure homogenisation technique, with and without various pre-treatments of the fibrous feedstock. The geometry and microstructure of the cellulose nanofibres were observed by SEM and TEM and their particle size measured using image analysis and dynamic light scattering. Aspect ratios of nanofibres made by microfluidisation were orders of magnitude greater than those achieved by acid hydrolysis. FTIR, XRD and TGA were used to characterise changes to chemical functionality, cellulose crystallinity and thermal stability resulting from the approaches used for preparing the cellulose nanofibres. Hydrolysis using sulphuric acid gave rise to esterification of the cellulose nanofibres, a decrease in crystallinity with MCC, but an increase with flax, together with an overall reduction in thermal stability. Increased shear history of flax subjected to multiple passes through the microfluidiser, raised both cellulose nanofibril crystallinity and thermal stability, the latter being strongly influenced by acid, alkaline and, most markedly, silane pretreatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microwave reactor system was investigated as a potential technique to maximize sugar yield for the hydrolysis of municipal solid waste for ethanol production. Specifically, dilute acid hydrolysis of a-cellulose and waste cellulosic biomass (grass clippings) with phosphoric acid was undertaken within the microwave reactor system. The experimental data and reaction kinetic analysis indicate that the use of a microwave reactor system can successfully facilitate dilute acid hydrolysis of cellulose and waste cellulosic biomass, producing high yields of total sugars in short reaction times. The maximum yield of reducing sugars was obtained at 7.5% (w/v) phosphoric acid and 160 degrees C, corresponding to 60% of the theoretical total sugars, with a reaction time of 5 min. When using a very low acid concentration (0.4% w/v) for the hydrolysis in the microwave reactor, it was found that 10 g of total sugars/100 g dry mass was produced, which is significant considering the low acid concentration. When hydrolyzing grass clippings using the microwave reactor, the optimum conditions were an acid concentration of 2.5% (w/v), 175 degrees C with a 15 min reaction time, giving 18 g/100 g dry mass of total sugars, with xylose being the sugar with the highest yield. It was observed that pentose sugars were more easily formed but also more easily degraded, these being significantly affected by increases in acid concentration and temperature. Kinetic modeling of the data indicated that the use of microwave heating may account for an increase in reaction rate constant, k(1), found in this study in comparison with conventional systems described in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their widespread use, there is a paucity of information concerning the effect of storage on the rheological properties of pharmaceutical gels that contain organic and inorganic additives. Therefore, this study examined the effect of storage (1 month at either 4 or 37 degrees C) on the rheological and mechanical properties of gels composed of either hydroxypropylmethylcellulose (3-5% w/w, HPMC) or hydroxyethylcellulose (3-5% w/w, HEC) and containing or devoid of dispersed organic (tetracycline hydrochloride 2% w/w) or inorganic (iron oxide 0.1% w/w) agents. The mechanical properties were measured using texture profile analysis whereas the rheological properties were analyzed using continuous shear rheometry and modeled using the Power Law model. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing polymer concentration (3-5% w/w) significantly increased the consistency, hardness, compressibility, and adhesiveness of the formulations due to increased polymer chain entanglement. Following storage (I month at 4 and 37 degrees C) the consistency and mechanical properties of additive free HPMC gets (but not HEC gels) increased, due to the time-dependent development of polymer chain entanglements. Incorporation of tetracycline hydrochloride significantly decreased and increased the rheological and mechanical properties of HPMC and HEC gels, respectively. Conversely, the incorporation of iron oxide did not affect these properties. Following storage, the rheological and mechanical properties of HPMC and HEC formulations were markedly compromised. This effect was greater following storage at 37 than at 4 degrees C and, additionally, greater in the presence of tetracycline hydrochloride than iron oxide. It is suggested that the loss of rheological/mechanical structure was due to chain depolymerization, facilitated by the redox properties of tetracycline hydrochloride and iron oxide. These observations have direct implications for the design and formulation of gels containing an active pharmaceutical ingredient. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the mechanical/textural, viscoeiastic and mucoadhesive properties of a range of aqueous gels composed of either hydroxyethylcellulose (HEC) or sodium carboxymethylcellulose (Na CMC). The mechanical/textural properties of each formulation were determined using texture profile analysis. The viscoelastic properties of each formulation were examined over a defined frequency range (0.01-1.0 Hz) using oscillatory rheometry in conjunction with stainless steel parallel plate geometry. The mucoadhesive properties of the gels were evaluated by measuring the tensile force required to overcome the gel/mucin adhesive interaction. Both gel hardness and compressibility, properties that affect the ease of product removal from a container and spreadability, increased as a function of increasing polymer concentrations. This is attributed to the effects of HEC and Na CMC on gel viscosity. Gel adhesiveness, a property related to bioadhesion, also increased as a function of polymer concentration and is attributed to the reported adhesive nature of these polymers. Increasing frequency of oscillation increased the storage and loss moduli yet decreased bath the dynamic viscosity of each gel type and also the loss tangent of HEC (but not Na CMC) gels. Therefore, following exposure to the range of oscillatory stresses that may be expected in vivo, HEC gels will be more susceptible than Na CMC gels to alterations in these rheological properties. Consequently, it would be expected that the clinical performance of HEC gels will be modified to a greater extent than Na CMC gels. In general, HEC gels exhibited a greater elastic nature than Na CMC gels over the frequency range employed for oscillation The storage and loss moduli and dynamic viscosity of both gel types increased, yet the loss tangent of both gel types decreased as a function of increasing polymer concentration. Gel mucoadhesive strength was dependent on both the time of contact of the formulation with mucin and also on polymer concentration. In conclusion, this study has characterised a number of gels containing either HEC or Na CMC in terms of their mechanical/textural, viscoelastic and mucoadhesive properties. Due to its relevance to the clinical performance, it is suggested that the information derived from these methods may be usefully combined to provide a more rational basis for the selection of polymers and their formulation as topical drug delivery systems. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador: