969 resultados para SIGNALING MECHANISMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 1 beta (IL-1 beta) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-kappaB and subsequent processing of pro-IL-1 beta by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus-induced production of IL-1 beta are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus-induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-kappaB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9-Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The follicle-associated epithelium (FAE) that overlies Peyer's patches (PPs) exhibits distinct features compared with the adjacent villus epithelium. Besides the presence of antigen-sampling membranous M cells and the down-regulation of digestive functions, it constitutively expresses the chemokine CCL20. The mechanisms that induce FAE differentiation and CCL20 expression are poorly understood. The aim of this work was to test whether lymphotoxin beta receptor signaling (LTbetaR), which plays a central role in PPs' organogenesis, mediates CCL20 gene expression in intestinal epithelial cells. METHODS: CCL20, lymphotoxin beta (LTbeta) and LTbetaR expression were monitored during embryonic development by in situ hybridization of mouse intestine. The human intestinal epithelial cell line T84 was used to study CCL20 expression following LTalpha(1)/beta(2) stimulation. In vivo CCL20 expression following agonistic anti-LTbetaR antibody treatment was studied by laser microdissection and quantitative RT-PCR. RESULTS: CCL20 was expressed in the FAE before birth at the time when the first hematopoietic CD4(+)CD3(-) appeared in the PP anlage. LTbetaR was expressed in the epithelium during PP organogenesis, making it a putative target for LTalpha(1)beta(2)signals. In vitro, CCL20 was induced in T84 cells upon LTbetaR signaling, either using an agonistic ligand or anti-LTbeta receptor agonistic antibody. LTalpha(1)beta(2)-induced CCL20 expression was found to be NF-kappaB dependent. LTbetaR signaling up-regulated CCL20 expression in the small intestinal epithelium in vivo. CONCLUSIONS: Our results show that LTbetaR signaling induces CCL20 expression in intestinal epithelial cells, suggesting that this pathway triggers constitutive production of CCL20 in the FAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les membres de l'ordre des Chlamydiales peuvent infecter un choix étendu d'animaux, insectes, et protistes. Comme toutes bactéries intracellulaires obligatoires, les Chlamydiales ont besoin d'une cellule hôte pour se répliquer. Chaque fois qu'une cellule est infectée une lutte commence entre les mécanismes de défense de la cellule et l'arsenal de facteurs de virulence de la bactérie. Dans cette thèse nous nous sommes intéressés à déterminer le rôle de deux mécanismes de l'immunité innée de l'hôte. En premier, nous avons étudié les NADPH oxidases, une source de molécules superoxydantes (MSO). Leur rôle dans la restriction de la réplication de Waddlia chondrophila et Estrella iausannensis a été étudié dans l'organisme modèle Dictyostelium discoideum et les macrophages humains. Différentes protéines Nox étaient nécessaires pour contrôler la réplication de W. chondrophila ou E. Iausannensis. De plus, nous avons déterminé que parmi les Chlamydiales, cinq espèces possédaient une catalase. Cette enzyme peut dégrader l'eau oxygénée, une MSO. L'activité de la catalase a été démontrée in vitro et dans les corps élémentaires. Avant de pouvoir étudier le rôle de NOX2 dans des macrophages infectés avec E. Iausannensis, nous avons dû établir la capacité de la bactérie à se répliquer clans les macrophages avec son trafic intracellulaire. Le deuxième mécanisme d'immunité innée que nous avons étudié est l'autophagie. Dans les cellules infectées l'autophagie permet de digérer les bactéries envahissantes. Deux protéines de la voie autophagique (Atg1 et Atg8) jouent un rôle dans la restriction de la croissance de W. chondrophila dans D. discoideum. D'avantage d'études sur l'immunité innée et les bactéries apparentés aux Chlamydia sont indispensables, car les réponses paraissent être spécifiques pour chaque espèce. - Members of the Chlamydiales order are able to infect a large variety of animals, insects, and protists. These obligate intracellular bacteria require a host cell for replication. Each time a cell is infected a struggle begins between the virulence arsenal of the bacteria and the defense mechanisms activated by the host. Each bacterial species will exhibit a selection of virulence factors that will allow it to overcome the defense of the host in some species, but not others. In this thesis we were interested in dissecting the role of two host innate immunity mechanisms. First we determined the role of NADPH oxidases, a source of reactive oxygen species (ROS), in restricting replication of Waddlia chondrophila and EstreHa lausannensis in the model organism Dictyostelium discoideum and human macrophages. Different Nox proteins were required to restrict growth of W. chondrophila and E. lausannensis. Additionally, we determined that five Chlamydia- related bacterial species encode for catalase, an enzyme that is able to degrade hydrogen peroxide, a ROS. The activity of the catalase was demonstrated in vitro and in elementary bodies. To study the role of NOX2 in macrophages for E. lausannensis we first had to determine the ability of E. lausannensis to grow in macrophages. Besides demonstrating its replication we also determined the intracellular trafficking of E. lausannensis. The second innate immunity mechanism studied was autophagy. Through autophagy bacteria can be targeted to degradation. Atg1 and Atg8, two autophagic proteins appeared restrict W. chondrophila replication in D. discoideum. More studies on innate immunity and Chlamydia-related bacteria are required. It appears that the responses to innate immunity are species specific and it will be difficult to generalize data obtained for W. chondrophila to the Chlamydiales order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Les vertébrés ont recours au système immunitaire inné et adaptatif pour combattre les pathogènes. La découverte des récepteurs Toll, il y a dix ans, a fortement augmenté l'intérêt porté à l'immunité innée. Depuis lors, des récepteurs intracellulaires tels que les membres de la famille RIG-like helicase (RLHs) et NOD-like receptor (NLRs) ont été décrits pour leur rôle dans la détection des pathogènes. L'interleukine-1 beta (IL-1β) est une cytokine pro-inflammatoire qui est synthétisée sous forme de précurseur, la proIL-1β. La proIL-1β requiert d'être clivée par la caspase-1 pour devenir active. La caspase-1 est elle-même activée par un complexe appelé inflammasome qui peut être formé par divers membres de la famille NLR. Plusieurs inflammasomes ont été décrits tels que le NALP3 inflammasome ou l'IPAF inflammasome. Dans cette étude nous avons identifié la co-chaperone SGT1 et la chaperone HSP90 comme partenaires d'interaction de NALP3. Ces deux protéines sont bien connues chez les plantes pour leurs rôles dans la régulation des gènes de résistance (gène R) qui sont structurellement apparentés à la famille NLR. Nous avons pu montrer que SGT1 et HSP90 jouent un rôle similaire dans la régulation de NALP3 et des protéines R. En effet, nous avons démontré que les deux protéines sont nécessaires pour l'activité du NALP3 inflammasome. De plus, la HSP90 est également requise pour la stabilité de NALP3. En se basant sur ces observations, nous avons proposé un modèle dans lequel SGT1 et HSP90 maintiennent NALP3 inactif mais prêt à percevoir un ligand activateur qui initierait la cascade inflammatoire. Nous avons également montré une interaction entre SGT1 et HSP90 avec plusieurs NLRs. Cette observation suggère qu'un mécanisme similaire pourrait être impliqué dans la régulation des membres de la famille des NLRs. Ces dernières années, plusieurs PAMPs mais également des DAMPs ont été identifiés comme activateurs du NALP3 inflammasome. Dans la seconde partie de cette étude, nous avons identifié la réponse au stress du réticulum endoplasmique (RE) comme nouvel activateur du NALP3 inflammasome. Cette réponse est initiée lors de l'accumulation dans le réticulum endoplasmique de protéines ayant une mauvaise conformation ce qui conduit, en autre, à l'arrêt de la synthèse de nouvelles protéines ainsi qu'une augmentation de la dégradation des protéines. Les mécanismes par lesquels la réponse du réticulum endoplasmique induit l'activation du NALP3 inflammasome doivent encore être déterminés. Summary : Vertebrates rely on the adaptive and the innate immune systems to fight pathogens. Awarness of the importance of the innate system increased with the identification of Toll-like receptors a decade ago. Since then, intracellular receptors such as the RIG-like helicase (RLH) and the NOD-like receptor (NLR) families have been described for their role in the recognition of microbes. Interleukin- 1ß (IL-1ß) is a key mediator of inflammation. This proinflammatory cytokine is synthesised as an inactive precursor that requires processing by caspase-1 to become active. Caspase-1 is, itself, activated in a complex termed the inflammasome that can be formed by members of the NLR family. Various inflammasome complexes have been described such as the IPAF and the NALP3 inflammasome. In this study, we have identified the co-chaperone SGT1 and the chaperone HSP90 as interacting partners of NALP3. SGT1 and HSP90 are both known for their role in the activity of plant resistance proteins (R proteins) which are structurally related to the NLR family. We have shown that HSP90 and SGT1 play a similar role in the regulation of NALP3 and in the regulation of plant R proteins. Indeed, we demonstrated that both HSP90 and SGT1 are essential for the activity of the NALP3 inflammasome complex. In addition, HSP90 is required for the stability of NALP3. Based on these observations, we have proposed a model in which SGT1 and HSP90 maintain NALP3 in an inactive but signaling-competent state, ready to receive an activating ligand that induces the inflammatory cascade. An interaction between several NLR members, SGTI and HSP90 was also shown, suggesting that similar mechanisms could be involved in the regulation of other NLRs. Several pathogen-associated molecular patterns (PAMPs) but also danger associated molecular patterns (DAMPs) have been identified as NALP3 activators. In the second part of this study, we have identified the ER stress response as a new NALP3 activator. The ER stress response is activated upon the accumulation of unfolded protein in the endoplasmic reticulum and results in a block in protein synthesis and increased protein degradation. The mechanisms of ER stress-mediated NALP3 activation remain to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A woman's risk of breast cancer is strongly affected by her reproductive history. The hormonal milieu is also a key determinant of the course of the disease. Combining mouse genetics with tissue recombination techniques, we have established that the female reproductive hormones, estrogens, progesterone, and prolactin, act sequentially on the mammary epithelium to trigger distinct developmental steps. The hormones impinge directly on a subset of luminal mammary epithelial cells that express the respective hormone receptors and act as sensor cells translating and amplifying systemic signals into local stimuli. Local signaling is stage and age specific. During puberty, estrogens promote proliferation using the EGF family member, amphiregulin, as essential paracrine mediator. In adulthood, progesterone, rather than estrogen, is the major inducer of stem cell activation and cell proliferation of the mammary epithelium. Hormonal signaling modulates crucial developmental pathways that impinge on mammary stem cell populations, while Notch signaling, by inhibiting p63, is central to mammary cell fate determination. Cell proliferation occurs in two waves. The first results from direct stimulation of the small fraction of hormone receptor positive cells. It is followed by a second wave of progesterone-induced proliferation involving mostly hormone receptor negative cells, in which RANKL is a key mediator. A model in which repeated activation of paracrine signaling by progesterone with resulting stem cell activation promotes breast carcinogenesis is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox4, are not found in leucocytes, but are highly expressed in vascular cells and upregulated with vascular remodeling, such as that found in hypertension and atherosclerosis. The difference in catalytic subunits offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic functions carried out by reactive oxygen and nitrogen species. Nitric oxide and targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack, than are conventional antioxidants. The roles of Nox isoforms in other inflammatory conditions are yet to be explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-gamma-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-gamma treatment in human melanoma cell lines. METHODS Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan(R) Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-gamma-treated cells. RESULTS Altered IFN-gamma mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-alpha led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-gamma treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-alpha treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-gamma in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-gamma signaling pathway. CONCLUSION We observed two distinct mechanisms of loss of IFN-gamma inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-gamma signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence of IFN-gamma-mediated HLA class I expression in ESTDAB-159 cells is due to epigenetic blocking of IFN-regulatory factor 1 (IRF-1) transactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyphenism is the phenomenon in which alternative phenotypes are produced by a single genotype in response to environmental cues. An extreme case is found in social insects, in which reproductive queens and sterile workers that greatly differ in morphology and behavior can arise from a single genotype. Experimental evidence for maternal effects on caste determination, the differential larval development toward the queen or worker caste, was recently documented in Pogonomyrmex seed harvester ants, in which only colonies with a hibernated queen produce new queens. However, the proximate mechanisms behind these intergenerational effects have remained elusive. We used a combination of artificial hibernation, hormonal treatments, gene expression analyses, hormone measurements, and vitellogenin quantification to investigate how the combined effect of environmental cues and hormonal signaling affects the process of caste determination in Pogonomyrmex rugosus. The results show that the interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on the production of alternative phenotypes and set vitellogenin as a likely key player in the intergenerational transmission of information. This study reveals how hibernation triggers the production of new queens in Pogonomyrmex ant colonies. More generally, it provides important information on maternal effects by showing how environmental cues experienced by one generation can translate into phenotypic variation in the next generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.