755 resultados para SIGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and characterization of ultrafast wideband low-loss single-pole single-throw (SPST) and single-pole double-throw (SPDT) differential switches. The SPDT switch exhibits insertion loss of lower than 1.25 dB from 42 to 70 GHz and isolation of better than 20 dB from 40 to 65 GHz. Similar low-loss and broadband characteristics are also observed from the measured SPST switch. The proposed switch topologies adopting current-steering technique and implemented in 0.35 µm SiGe bipolar technology result in a switching time of only 75 ps. This suggests a maximum switching speed of 13 Gbps, the fastest ever reported at V-band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact differential 4-way power combiner with 2.3 dB loss and high common-mode rejection characteristic for use in mm-wave PAs is presented. A complete circuit comprised of a power splitter, two-stage cascode PA array, and a power combiner was implemented in SiGe technology. Measured small-signal gain of at least 17 dB was obtained from 74.5 GHz to 80.5 GHz with a peak 21 dB at 79 GHz. The prototype delivered 13.2 dBm P1dB and 14.3 dBm Psat when operated from a single 3.3 V supply at 75 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a two-stage differential cascode power amplifier (PA) for 81-86 GHz E-band applications is presented. The PA was realised in SiGe technology with fT/fmax 170/250 GHz. A broadband transformer with efficiency higher than 79.4% from 71 GHz to 96 GHz is used as a BALUN. The PA delivers a 4.5 dBm saturated output power and exhibits a 13.4 dB gain at 83.6 GHz. The input and output return losses agree well with the design specifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design, implementation, and characterization of a new type of passive power splitting and combining structure for use in a differential four-way power-combining amplifier operating at E-band. In order to achieve lowest insertion loss, input and output coils inductances are resonated with shunt capacitances. Simple C-L-C and L-C networks are proposed in order to compensate inductive loading due to routing line that would otherwise introduce mismatch and increase loss. Across 78-86 GHz band, measured insertion loss is about 7 dB. Measured return losses are >10 dB from 73 GHz to 94 GHz at the input port and >9 dB from 60 GHz to 94 GHz at the output port. When integrated with driver and power amplifier cells, the simulated complete circuit exhibits 18.2 dB gain and 20.3 dBm saturated output power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A V-band wide tuning-range VCO and high frequency divide-by-8 frequency divider using Infineon 0.35 µm SiGe HBT process are presented in this paper. An LC impedance peaking technique is introduced in the Miller divider to increase the sensitivity and operation frequency range of the frequency divider. Two static frequency dividers implemented using current mode logic are used to realize dividing by 4 in the circuit. The wide tuning range VCO operates from 51.9 to 64.1 GHz i.e. 20.3% frequency tuning range. The measured phase noise at the frequency divider output stage is around -98.5 dBc at 1 MHz. The circuit consumes 200mW and operates from a 3.5Vdc supply, and occupies 0.6×0.8 mm2 die area.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of a novel 8-way power-combining transformer for use in mm-wave power amplifier (PA). The combiner exhibits a record low insertion loss of 1.25 dB at 83.5 GHz. A complete circuit comprised of a power splitter, two-stage cascode PA array, a power combiner and input/output matching elements was designed and realized in SiGe technology. Measured gain of at least 16.8 dB was obtained from 76.4 GHz to 85.3 GHz with a peak 19.5 dB at 83 GHz. The prototype delivered 12.5 dBm OP and 14 dBm saturated output power when operated from a 3.2 V DC supply voltage at 78 GHz. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Référence bibliographique : Rol, 58702