982 resultados para SEA-LEVEL RISE
Resumo:
Coastal communities throughout the United States have dealt with the devastating effects of storms for centuries, however today’s threats are greater due to three factors. First, the population along the coastline has grown, and is projected to increase.i Additionally, past land use management decisions in the coastal zone have rarely led to the greatest protection from threats. Finally, climate change is predicted to affect coastal areas by accelerating current sea level rise rates and possibly increasing storm intensity.ii These factors compounded together mean that coastal communities are facing a very dangerous situation that threatens economies and human life. (PDF contains 4 pages)
Resumo:
Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)
Resumo:
An air filled ionization chamber has been constructed with a volume of 552 liters and a wall consisting of 12.7 mg/cm2 of plastic wrapped over a rigid, lightweight aluminum frame. A calibration in absolute units, independent of previous Caltech ion chamber calibrations, was applied to a sealed Neher electrometer for use in this chamber. The new chamber was flown along with an older, argon filled, balloon type chamber in a C-135 aircraft from 1,000 to 40,000 feet altitude, and other measurements of sea level cosmic ray ionization were made, resulting in the value of 2.60 ± .03 ion pairs/cm3 sec atm) at sea level. The calibrations of the two instruments were found to agree within 1 percent, and the airplane data were consistent with previous balloon measurements in the upper atmosphere. Ionization due to radon gas in the atmosphere was investigated. Absolute ionization data in the lower atmosphere have been compared with results of other observers, and discrepancies have been discussed.
Data from a polar orbiting ion chamber on the OGO-II, IV spacecraft have been analyzed. The problem of radioactivity produced on the spacecraft during passes through high fluxes of trapped protons has been investigated, and some corrections determined. Quiet time ionization averages over the polar regions have been plotted as function of altitude, and an analytical fit is made to the data that gives a value of 10.4 ± 2.3 percent for the fractional part of the ionization at the top of the atmosphere due to splash albedo particles, although this result is shown to depend on an assumed angular distribution for the albedo particles. Comparisons with other albedo measurements are made. The data are shown to be consistent with balloon and interplanetary ionization measurements. The position of the cosmic ray knee is found to exhibit an altitude dependence, a North-South effect, and a small local time variation.
Resumo:
Tidal and sea level changes during 1991 at a coastal station (Jeddah) in the central part of the Red Sea are investigated. Analysis shows higher sea levels in winter and lower in summer. The amplitude of change at Jeddah is above 50cm. Analysis of wind stress at Jeddah indicates an insignificant contribution of the cross-shore component, while a major part of the changes in the sea level can be accounted for by the long-shore component.
Resumo:
From the distribution of oceanographic data (temperature and salinity) in both Arabian Gulf and Gulf of Oman, the steric components (thermal, haline and steric heights) are calculated for the upper 50m layer during different seasons. The analysis reveals relevant evidence, that temperature variations (thermal component) play a role in the fluctuations of sea level within the investigated area. The salinity variations (haline component) is only significant near the entrance. The sea level variations due to density (steric component) is low during winter and spring and high during summer and autumn. The steric height is always lower in the northern and central regions of Arabian Gulf and higher in eastern region of Arabian Gulf and in the Gulf of Oman, i.e. the surface water must flow from the Gulf of Oman to the Arabian Gulf. The steric sea level gradient around the Strait of Hormuz are 0.04 cm/km in winter, 0.04 cm/km in spring, and 0.025 cm/km in summer and 0.014 cm/km in autumn.
Resumo:
National Natural Science Foundation of China (NSFC) ; [2007CB411600]; [30530120]
Resumo:
During the Last Glacial Maximum, ice sheets covered large areas in northern latitudes, and global temperatures were significantly lower than today. But few direct estimates exist of the volume of the ice sheets, or the timing and rates of change during their advance and retreat. Here we analyze four distinct sediment facies in the shallow, tectonically stable Bonaparte Gulf, Australia - each of which is characteristic of a distinct range in sea level - to estimate the maximum volume of land-based ice during the last glaciation and the timing of the initial melting phase. We use faunal assemblages and preservation status of the sediments to distinguish open marine, shallow marine, marginal marine and brackish conditions, and estimate the timing and the mass of the ice sheets using radiocarbon dating and glacio-hydroisostatic modelling. Our results indicate that from at least 22,000 to 19,000 (calendar) years before present, land-based ice volume was at its maximum, exceeding today's grounded ice sheets by 52.5 x 10 exp 6 cu km. A rapid decrease in ice volume by about 10 percent within a few hundred years terminated the Last Glacial Maximum at 19,000 +/- 250 years.
Resumo:
A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone I (812-715 cm, 24.2-21.1 cal. kaBP), zone II (715-451 cm, 21.1-15.2 cal. kaBP), zone III (451-251 cm, 15.2-10.8 cal. kaBP), zone IV (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the exposed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.85 2.2, 1.6 ka.
Resumo:
Two well-defined deltaic sequences in the Bohai Sea and in the South Yellow Sea represent post-glacial accumulation of Yellow River-derived sediments. Another prominent depocenter on this epicontinental shelf, a pronounced clinoform in the North Yellow Sea, wraps around the northeastern and southeastern end of the Shandong Peninsula, extending into the South Yellow Sea. This Shandong mud wedge is 20 to 40 m thick and contains an estimated 300 km(3) of sediment. Radiocarbon dating, shallow seismic profiles, and regional sea-level history suggest that the mud wedge formed when the rate of post-glacial sea-level rise slackened and the summer monsoon intensified, at about 11 ka. Geomorphic configuration and mineralogical data indicate that present-day sediment deposited on the Shandong mud wedge comes not only from the Yellow River but also from coastal erosion and local rivers. Basin-wide circulation in the North Yellow Sea may transport and redistribute fine sediments into and out of the mud wedge.
Resumo:
Satellite and in situ observations in the equatorial Atlantic Ocean during 2002-03 show dominant spectral peaks at 40-60 days and secondary peaks at 10-40 days in sea level and thermocline within the intraseasonal period band (10-80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000-03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used. Within 3 degrees S-3 degrees N of the equatorial region, the strong 40-60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40-50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002-03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000-06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/ lag correlation ranging from-0.62 to 0.74 above 95% significance. Away from the equator (3 degrees-5 degrees N), however, sea level and thermocline variations in the 40-60-day band are caused largely by tropical instability waves (TIWs). On 10-40-day time scales and west of 10 degrees W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5 degrees S-5 degrees N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10 W, SSHA and thermocline variations at 10 40- day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2 degrees S-2 degrees N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1 degrees-5 degrees N and 1 degrees-5 degrees S regions.
Resumo:
Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997-98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.
Resumo:
The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.
Resumo:
Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-TibetanPlateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1 alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan- Plateau mammals andsea- level mice after injection of CoCl2 (20, 40, or 60 mg/ kg) and normobaric hypoxia (16.0% O-2, 10.8% O-2, and 8.0% O-2) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl2 markedly increased 1) HIF-1 alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl2 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1 alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae. Results suggest that 1) HIF-1 alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl2 induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl2 reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau- acclimatized mammals.
Resumo:
The intercorrelation of palaeoclimate events from various studies is often hindered by a lack of precise chronological control. Tephra isochrons can overcome this problem by providing direct site linkages. This paper outlines a study of Holocene peat and diatomite deposits that accumulated within the floodplain of Lough Neagh, Northern Ireland. The Icelandic Hekla 4 tephra has been identified at the base of diatomite deposits at a number of sites and provides firm dating evidence for a widespread flooding event in the area at ca. 2300 BC. The evidence is consistent with other studies in Ireland and elsewhere for increased wetness at this time. The results demonstrate that the terrestrial deposits around Lough Neagh contain an important record of Holocene lake-level change. Dendrochronological evidence from the Lough Neagh area provides additional information about lake-level fluctuations over the past two millennia.