990 resultados para SCALAR FIELD-EQUATIONS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze renormalizability properties of noncommutative (NC) theories with a bifermionic NC parameter. We introduce a new four-dimensional scalar field model which is renormalizable at all orders of the loop expansion. We show that this model has an infrared stable fixed point (at the one-loop level). We check that the NC QED (which is one-loop renormalizable with a usual NC parameter) remains renormalizable when the NC parameter is bifermionic, at least to the extent of one-loop diagrams with external photon legs. Our general conclusion is that bifermionic noncommutativity improves renormalizability properties of NC theories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study quasinormal modes and scattering properties via calculation of the S matrix for scalar and electromagnetic fields propagating in the background of spherically symmetric and axially symmetric traversable Lorentzian wormholes of a generic shape. Such wormholes are described by the general Morris-Thorne ansatz. The properties of quasinormal ringing and scattering are shown to be determined by the behavior of the wormhole's shape function b(r) and shift factor Phi(r) near the throat. In particular, wormholes with the shape function b(r), such that b(dr) approximate to 1, have very long-lived quasinormal modes in the spectrum. We have proved that the axially symmetric traversable Lorentzian wormholes, unlike black holes and other compact rotating objects, do not allow for superradiance. As a by-product we have shown that the 6th order WKB formula used for scattering problems of black or wormholes gives quite high accuracy and thus can be used for quite accurate calculations of the Hawking radiation processes around various black holes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study holographic superconductors in Einstein-Gauss-Bonnet gravity. We consider two particular backgrounds: a d-dimensional Gauss-Bonnet-AdS black hole and a Gauss-Bonnet-AdS soliton. We discuss in detail the effects that the mass of the scalar field, the Gauss-Bonnet coupling and the dimensionality of the AdS space have on the condensation formation and conductivity. We also study the ratio omega(g)/T(c) for various masses of the scalar field and Gauss-Bonnet couplings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the common singularities present in generic modified gravity models governed by actions of the type S = integral d(4)x root-gf(R, phi, X). with X = -1/2 g(ab)partial derivative(a)phi partial derivative(b)phi, are essentially the same anisotropic instabilities associated to the hypersurface F(phi) = 0 in the case of a nonminimal coupling of the type F(phi)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface partial derivative f/partial derivative R = 0 is attained. Some examples are explicitly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider scalar perturbations in the time dependent Horava-Witten model in order to probe its stability. We show that during the nonsingular epoque the model evolves without instabilities until it encounters the curvature singularity where a big crunch is supposed to occur. We compute the frequencies of the scalar field oscillation during the stable period and show how the oscillations can be used to prove the presence of such a singularity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK black holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conformally flat spacetimes with an elastic stress energy tensor having diagonal trace-free anisotropic pressure are investigated using 1+3 formalism. The 1+3 Bianchi and Jacobi identities and Einstein field equations are written for a particular case with a conformal factor dependent on only one spatial coordinate. Solutions with non null anisotropic pressure are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through an imaginary change of coordinates, the ordinary Poincar algebra is shown to be a subalgebra of the Galilei one in four space dimensions. Through a subsequent contraction the remaining Lie generators are eliminated in a natural way. An application of these results to connect Galilean and relativistic field equations is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker spacetime in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a nonlocal term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near a zero scale factor (initial singularity), it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from ``nothing'' into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.