865 resultados para SATURABLE-ABSORBER MIRROR
Resumo:
Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations
Resumo:
The stability of the steady-state solutions of mode-locking of cw lasers by a fast saturable absorber is imvestigated. It is shown that the solutions are stable if the condition (Ps/Pa) = (2/3) (P0Pa) is satisfied, where (Ps/Pa) is the steady-state la ser power, (P0/Pa) is the power at mode-locking threshold, and Pa is the saturated power of the absorber.
Resumo:
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths. Semiconductor saturable absorber mirrors are widely used in fibre lasers, but their operating range is typically limited to a few tens of nanometres, and their fabrication can be challenging in the 1.3-1.5 microm wavelength region used for optical communications. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness. Here, we engineer a nanotube-polycarbonate film with a wide bandwidth (>300 nm) around 1.55 microm, and then use it to demonstrate a 2.4 ps Er(3+)-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
Resumo:
Coupled-cavity passive harmonic mode-locking of a quantum well based vertical-external-cavity surface-emitting laser has been demonstrated, yielding an output pulse train of 1.5 ps pulses at a repetition rate of 80 GHz and with an average power of 80 mW. Harmonic mode-locking results from coupling between the main laser cavity and a cavity formed within the substrate of the saturable absorber structure. Mode-locking on the second harmonic of the substrate cavity allows a train of 1.1 ps pulses to be generated at a repetition rate of 147 GHz with 40 mW average power. © 2010 American Institute of Physics.
Resumo:
In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.
A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.
In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.
A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.
Resumo:
单纵模掺铒光纤激光器在光通信和光传感等方面有着广泛的应用前景。设计了一种新型的光纤激光器,在光纤环形镜中嵌入未抽运的掺铒光纤作为可饱和吸收体以抑制多纵模,用光纤环谐振腔作为滤波器抑制拍频噪声,用光纤光栅作为波长选择器件,最终得到了单纵模输出并消除了拍频噪声。使用零拍法测量其线宽小于频谱仪的低频极限5kHz。实验结果证明了可饱和吸收体和光纤环的功能。
Resumo:
We investigate the lasing characteristics of a laser-diode-array side-pumped electro-optic Q-switched Nd:Y3Al5O12 ceramic laser operating at 1000 Hz pulse repetition rate. Using a YAG poltcrystalline rod with Nd3+ concentration at 1 at.% as the gain medium, pumping with 808 nm laser-diode-arrays, the Q-switched laser output at 1064 nm wavelength with 23 mJ pulse energy and less than 12 ns FWHM pulse width are obtained at a pumping power of about 400 W, the slope efficiency is around 15%, the output beam divergence angle is about 1.2 mrad.
Resumo:
For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759 W, a minimum pulse duration of 86 ns, and a 6.7 kHz repetition rate at 3.7 W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting. (C) 2008 Optical Society of America
Resumo:
To study the effects of upconversion in Erbium, a set of rate equations that simulates the performance of the passively Q-switched Er:Yb:glass laser with a Co2+:MgAl
Resumo:
By use of a laser diode as a pump source, a self-Q-switched laser from a Cr,Nd:YAG crystal is demonstrated. The output Q-switched traces are very stable, the threshold pump power is 3.5 W, the pulse duration is 50 ns, and the slope efficiency is as high as 20%. In addition, the pulse width remains constant while the pulse repetition rate Varies with pump power. (C) 2000 Optical Society of America OCIS codes: 140.0140, 140.2020, 140.3380, 140.3480, 140.3540, 140.3580.
Resumo:
Defects in as-grown U3+ : CaF2 crystals grown with or without PbF2 as an oxygen scavenger were studied using Raman spectra, thermoluminescence glow curves, and additional absorption (AA) spectra induced by heating and gamma-irradiation. The effects of heating and irradiation on as-grown U3+: CaF2 crystals are similar, accompanied by the elimination of H-type centers and production of F-type centers. U3+ is demonstrated to act as an electron donor in the CaF2 lattice, which is oxidized to the tetravalent form by thermal activation or gamma-irradiation. In the absence of PbF(2)as an oxygen scavenger, the as-grown U3+:CaF2 crystals contain many more lattice defects in terms of both quantity and type, due to the presence of O2- impurities. Some of these defects can recombine with each other in the process of heating and gamma-irradiation. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Compact femtosecond laser operation of Yb:Gd2SiO5 (Yb:GSO) crystal was demonstrated under high-brightness diode-end-pumping. A semiconductor saturable absorption mirror was used to start passive mode-locking. Stable mode-locking could be realized near the emission bands around 1031, 1048, and 1088 nm, respectively. The mode-locked Yb: GSO laser could be tuned from one stable mode-locking band to another with adjustable pulse durations in the range 1 similar to 100 ps by slightly aligning laser cavity to allow laser oscillations at different central wavelengths. A pair of SF10 prisms was inserted into the laser cavity to compensate for the group velocity dispersion. The mode-locked pulses centered at 1031 nm were compressed to 343 fs under a typical operation situation with a maximum output power of 396 mW. (c) 2007 Optical Society of America.
Resumo:
通过在稳定连续波运转的Yb:YAG激光器中插入不同掺杂浓度的新型钠、镱共掺的氟化钙晶体的对比性实验,证明了镱、钠共掺的氟化钙晶体在1050nm具有明显的可饱和吸收作用,从而解释了该晶体作为增益介质在该波段总是趋于自调Q运转的原因.Yb3+离子是该晶体可饱和吸收作用的主要因素,但是共掺入适当的Na离子可以明显改善晶体的调Q效果.优化共掺镱、钠离子的浓度和比例后的氟化钙晶体能够作为1050nm波段激光器的被动Q开关.
Resumo:
Advanced waveguide lasers, operating both in continuous wave and pulsed regimes, have been realized in an active phosphate glass by direct writing with femtosecond laser pulses. Stable single mode operation was obtained; the laser provided more than 50 m W in single longitudinal and transverse mode operation with 21% slope efficiency. Furthermore, by combining a high gain waveguide and an innovated fiber-pigtailed saturable absorber based on carbon nanotubes, a mode-locked ring laser providing transform limited 1.6 ps pulses was demonstrated. © 2007 IEEE.
Resumo:
Materials with nonlinear optical properties are much sought after for ultrafast photonic applications. Mode-locked lasers can generate ultrafast pulses using saturable absorbers[1]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs). However, narrow tuning range (tens of nm), complex fabrication and packaging limit their applications[2]. Single wall nanotubes (SWNTs) and graphene offer simpler and cost-effective solutions[1]. Broadband operation can be achieved in SWNTs using a distribution of tube diameters[1,3], or by using graphene[4-8], due to the gapless linear dispersion of Dirac electrons[8,9]. © 2011 IEEE.