1000 resultados para Ryegrass pollen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone I (812-715 cm, 24.2-21.1 cal. kaBP), zone II (715-451 cm, 21.1-15.2 cal. kaBP), zone III (451-251 cm, 15.2-10.8 cal. kaBP), zone IV (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the exposed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.85 2.2, 1.6 ka.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and sensitive method for evaluating the chemical compositions of protein amino acids, including cystine (Cys)(2) and tryptophane (Try) has been developed, based on the use of a sensitive labeling reagent 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) along with fluorescence detection. The chromophore of the 1,2-benzo-3,4-dihydrocarbazole-ethyl chloroformate (BCEOC-Cl) molecule was replaced with the 2-(11H-benzo[alpha]-carbazol-11-yl) ethyl functional group, yielding the sensitive fluorescence molecule BCEC-Cl. The new reagent BCEC-Cl could then be substituted for labeling reagents commonly used in amino acid derivatization. The BCEC-amino acid derivatives exhibited very high detection sensitivities, particularly in the cases of (Cys)(2) and Try, which cannot be determined using traditional labeling reagents such as 9-fluorenyl methylchloroformate (FMOC-Cl) and ortho-phthaldialdehyde (OPA). The fluorescence detection intensities for the BCEC derivatives were compared to those obtained when using FMOC-Cl and BCEOC-Cl as labeling reagents. The ratios I (BCEC)/I (BCEOC) = 1.17-3.57, I (BCEC)/I (FMOC) = 1.13-8.21, and UVBCEC/UVBCEOC = 1.67-4.90 (where I is the fluorescence intensity and UV is the ultraviolet absorbance). Derivative separation was optimized on a Hypersil BDS C-18 column. The detection limits calculated from 1.0 pmol injections, at a signal-to-noise ratio of 3, ranged from 7.2 fmol for Try to 8.4 fmol for (Cys)(2). Excellent linear responses were observed, with coefficients of > 0.9994. When coupled with high-performance liquid chromatography, the method established here allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids including (Cys)(2) and Try from bee-collected pollen (bee pollen) samples.