981 resultados para Rocks, Carbonate
Resumo:
During ODP Leg 168, 10 sites were drilled across the eastern flank of the Juan de Fuca Ridge (JdFR), to examine the conditions of fluid-rock interaction in three distinct hydrothermal regimes (referred to as the Hydrothermal Transition (HT), Buried Basement (BB) and Rough Basement (RB) transects), extending over a ~120 km linear transect perpendicular to the spreading ridge. This was carried out in an attempt to constrain the conditions and processes that control the location, style and magnitude of low temperature (<150°C) fluid-rock interaction within this setting. This paper presents new data on the petrology, mineral chemistry and whole rock strontium and oxygen isotopic compositions of basalts from the eastern flank of the JdFR, in order to investigate the extent, style and sequence of low-temperature hydrothermal alteration and to establish how the hydrothermal regime evolved with time. Throughout the flank, a progressive sequence of low-temperature hydrothermal alteration has been identified, marked by changes in the dominant secondary mineral assemblage, changing from: chlorite+chlorite/smectite; to iron oyxhydroxide+celadonite; to saponite+/-pyrite; culminating at present with Ca- to CaMg(+/-Fe,Mn)-carbonate. The changes in secondary mineralogy have been used to infer a series of systematic shifts in the conditions of alteration that occurred as the basement moved off-axis and was progressively buried by sediment. In general, hydrothermal alteration of the uppermost oceanic crust commenced under open, oxidative conditions, with interaction between unmodified to slightly modified seawater and basaltic crust, to a regime in which circulation of a strongly modified seawater-derived fluid was more restricted, and alteration occurred under non-oxidative conditions. Across the flank, petrological observations and microprobe analyses indicate that the observed ranges in secondary mineral composition are directly related to changes in the geochemical and textural characteristics of the basement, as well as to interaction between fluids and phases from the four stages of alteration. This is suggestive of an increase in fluid-rock increased with time. Whole rock 87Sr/86Sr and d18O analyses of basalts from across the eastern flank of the JdFR reinforce petrological observations, with 87Sr/86Sr and d18O values slightly elevated above accepted pristine MORB values for this region. These results are consistent with an increase in the amount of fluid-rock interaction with time. Across the flank, enrichment in the 87Sr/86Sr and d18O relative to MORB, is influenced by a number of factors, including: local and regional variations in the crustal lithology and structure; the age of the crust; the extent of bulk rock alteration; and theoretically, the relative abundance of different isotopically-enriched secondary mineral phases in the crust.
Resumo:
The organic matter contents of sediments and rocks sampled during DSDP Leg 93 have been characterized by CHN and Rock-Eval analyses. Most samples from Sites 604 and 605 on the New Jersey continental slope and from Site 603 on the Hatteras outer continental rise contained less than 0.5% organic carbon. Some Neogene samples from the slope contained 1 to 2% organic carbon, and Cretaceous samples from the outer rise were as rich as 13.6% organic carbon by weight. Thin layers of black claystones of Santonian, Cenomanian, and Albian age were found interbedded in organiccarbon- lean, bioturbated, turbiditic claystones. Similar layers of turbiditic black marlstones were interspersed among Neocomian limestones and sandstones. Although the organic matter in many of the samples appeared to be detrital continental material, according to Rock-Eval and C/N values, Cenomanian black shales, in particular, contained substantial proportions of marine-derived organic matter.
Resumo:
Tracking the movement of migratory freshwater fish is essential to those invested in rebuilding declining fish populations. Using strontium isotopic signatures to match calcified fish tissues to streams where fish spawn is a useful method of tracking migratory fish where physical tracking methods such as radio, acoustic, or external tags, have proven unsuccessful. In this study, we develop tools to practice this method of tracking fish in Lake Roosevelt and its upstream tributaries in Washington State by analyzing the elemental concentrations and 87Sr/86Sr ratios of water samples, and mussel shell samples. This study evaluates whether mussel shells act as an appropriate proxy for water chemistry by comparing the 87Sr/86Sr isotope ratios of water samples to the 87Sr/86Sr isotope ratios of mussel shells sampled from the same, or nearby, locations. We compare concentrations of Ba, Ca, Cd, Cu, Fe, Mg, Pb, Sr, and U in the water and mussel shell samples to determine the feasibility of using mussel shells as a proxy for water chemistry. If it is determined that the concentrations of these elements in mussel shells reflect that of the surrounding water composition, the elemental composition of mussel shells can be compared to that of calcified tissues in fish, such as otoliths, to infer the location of the natal stream. We report analyses of water and mussel shell samples collected from Lake Roosevelt, Sanpoil River, Spokane River, Colville River, Kettle River, Pend Oreille River, Kootenay River, and Columbia River in Washington State. Each of these rivers is a tributary to Lake Roosevelt, and each flows through different geologic units. We hypothesize that the differences in the rock units of each stream’s watershed are reflected in the elemental concentrations and strontium isotopic ratios of water in each stream and in the lake. We also hypothesize that the composition of the mussel shells will match the composition of the water samples, therefore allowing us to use the mussel shells as a proxy for local water chemistry. Additionally, we hypothesize that the composition of the mussel shells will vary by location, and that we will be able to then infer where a fish is from by matching the composition of the fish in question to the mussels we have analyzed. We found that 87Sr/86Sr values for water and mussel hinge samples collected from tributaries east of Lake Roosevelt are significantly higher than the 87Sr/86Sr values for samples collected from tributaries west of Lake Roosevelt with averages of 0.7235 and 0.7089, respectively. The average 87Sr/86Sr ratios for water and mussel hinge samples collected within Lake Roosevelt is 0.7158, which is between the averages for samples collected east and west of the lake. Generally, older rocks are exposed on the east side of the lake, and younger rocks on the west side of the lake, so our 87Sr/86Sr values support the hypothesis that geologic units are a primary control on water chemistry, and that tributary compositions mix to form an average weighed by flow in Lake Roosevelt. The 87Sr/86Sr values for water and mussel shell samples collected from the same locations have a strong, positive linear correlation, suggesting that mussel shell 87Sr/86Sr ratios reflect the 87Sr/86Sr ratios of the ambient water. With these data, we can distinguish between different streams and the lake, but cannot distinguish between samples from within the same stream or within Lake Roosevelt. The Sr:Ca and Fe:Ca ratios of water samples show positive correlations with mussel shell compositions, with R2 values of 0.82 and 0.52, respectively. Ratios of Mg, Ba, Cu, Cd, Pb, and U to Ca showed little or no positive correlation between water and mussel shell samples. The elemental concentration data collected for this study do not demonstrate whether a correlation between elemental ratios in water samples and elemental ratios in mussel shell samples collected from the same location exists. Positive Sr:Ca and Fe:Ca correlations for water versus mussel shell samples indicate that perhaps for some elements, the composition of mussel shells are representative of the composition of ambient water. Using elemental concentration ratios to complement 87Sr/86Sr isotopic data may enhance our ability to identify correlations between water and mussel shell samples, and ultimately between mussel shell and otolith samples. The hinge part of a mussel shell may be used as a proxy for local water composition because the mussel shell composition reflects that of the local ambient water. The hinge of the mussel has the same composition as the whole mussel shell. We measured variation of 87Sr/86Sr ratios in the water among different streams and Lake Roosevelt. The 87Sr/86Sr values for samples collected in tributaries east of Lake Roosevelt, which erode older rocks, are higher for mussel shell and water samples than the average 87Sr/86Sr values for mussel shell and water samples collected in tributaries west of Lake Roosevelt, which flow through younger rocks.
Resumo:
The Buchans ore bodies of central Newfoundland represent some of the highest grade VMS deposits ever mined. These Kuroko-type deposits are also known for the well developed and preserved nature of the mechanically transported deposits. The deposits are hosted in Cambro-Ordovician, dominantly calc-alkaline, bimodal volcanic and epiclastic sequences of the Notre Dame Subzone, Newfoundland Appalachians. Stratigraphic relationships in this zone are complicated by extensively developed, brittledominated Silurian thrust faulting. Hydrothermal alteration of host rocks is a common feature of nearly all VMS deposits, and the recognition of these zones has been a key exploration tool. Alteration of host rocks has long been described to be spatially associated with the Buchans ore bodies, most notably with the larger in-situ deposits. This report represents a base-line study in which a complete documentation of the geochemical variance, in terms of both primary (igneous) and alteration effects, is presented from altered volcanic rocks in the vicinity of the Lucky Strike deposit (LSZ), the largest in-situ deposit in the Buchans camp. Packages of altered rocks also occur away from the immediate mining areas and constitute new targets for exploration. These zones, identified mostly by recent and previous drilling, represent untested targets and include the Powerhouse (PHZ), Woodmans Brook (WBZ) and Airport (APZ) alteration zones, as well as the Middle Branch alteration zone (MBZ), which represents a more distal alteration facies related to Buchans ore-formation. Data from each of these zones were compared to those from the LSZ in order to evaluate their relative propectivity. Derived litho geochemical data served two functions: (i) to define primary (igneous) trends and (ii) secondary alteration trends. Primary trends were established using immobile, or conservative, elements (i. e., HFSE, REE, Th, Ti0₂, Al₂0₃, P₂0₅). From these, altered volcanic rocks were interpreted in terms of composition (e.g., basalt - rhyodacite) and magmatic affinity (e.g., calc-alkaline vs. tholeiitic). The information suggests that bimodality is a common feature of all zones, with most rocks plotting as either basalt/andesite or dacite (or rhyodacite); andesitic senso stricto compositions are rare. Magmatic affinities are more varied and complex, but indicate that all units are arc volcanic sequences. Rocks from the LSZ/MBZ represent a transitional to calc-alkalic sequence, however, a slight shift in key geochemical discriminants occurs between the foot-wall to the hanging-wall. Specifically, mafic and felsic lavas of the foot-wall are of transitional (or mildly calc-alkaline) affinity whereas the hanging-wall rocks are relatively more strongly calc-alkaline as indicated by enriched LREE/HREE and higher ZrN, NbN and other ratios in the latter. The geochemical variations also serve as a means to separate the units (at least the felsic rocks) into hanging-wall and foot-wall sequences, therefore providing a valuable exploration tool. Volcanic rocks from the WBZ/PHZ (and probably the APZ) are more typical of tholeiitic to transitional suites, yielding flatter mantlenormalized REE patterns and lower ZrN ratios. Thus, the relationships between the immediate mining area (represented by LSZ/MBZ) and the Buchans East (PHZ/WBZ) and the APZ are uncertain. Host rocks for all zones consist of mafic to felsic volcanic rocks, though the proportion of pyroclastic and epiclastic rocks, is greatest at the LSZ. Phenocryst assemblages and textures are common in all zones, with minor exceptions, and are not useful for discrimination purposes. Felsic rocks from all zones are dominated by sericiteclay+/- silica alteration, whereas mafic rocks are dominated by chlorite- quartz- sericite alteration. Pyrite is ubiquitous in all moderately altered rocks and minor associated base metal sulphides occur locally. The exception is at Lucky Strike, where stockwork quartzveining contains abundant base-metal mineralization and barite. Rocks completely comprised of chlorite (chloritite) also occur in the LSZ foot-wall. In addition, K-feldspar alteration occurs in felsic volcanic rocks at the MBZ associated with Zn-Pb-Ba and, notably, without chlorite. This zone represents a peripheral, but proximal, zone of alteration induced by lower temperature hydrothermal fluids, presumably with little influence from seawater. Alteration geochemistry was interpreted from raw data as well as from mass balanced (recalculated) data derived from immobile element pairs. The data from the LSZ/MBZ indicate a range in the degree of alteration from only minor to severe modification of precursor compositions. Ba tends to show a strong positive correlation with K₂0, although most Ba occurs as barite. With respect to mass changes, Al₂0₃, Ti0₂ and P₂0₅ were shown to be immobile. Nearly all rocks display mass loss of Na₂O, CaO, and Sr reflecting feldspar destruction. These trends are usually mirrored by K₂0-Rb and MgO addition, indicating sericitic and chloritic alteration, respectively. More substantial gains ofK₂0 often occur in rocks with K-feldspar alteration, whereas a few samples also displayed excessive MgO enrichment and represent chloritites. Fe₂0₃ indicates both chlorite and sulphide formation. Si0₂ addition is almost always the case for the altered mafic rocks as silica often infills amygdules and replaces the finer tuffaceous material. The felsic rocks display more variability in Si0₂. Silicic, sericitic and chloritic alteration trends were observed from the other zones, but not K-feldspar, chloritite, or barite. Microprobe analysis of chlorites, sericites and carbonates indicate: (i) sericites from all zones are defined as muscovite and are not phengitic; (ii) at the LSZ, chlorites ranged from Fe-Mg chlorites (pycnochlorite) to Mg-rich chlorite (penninite), with the latter occurring in the stockwork zone and more proximal alteration facies; (iii) chlorites from the WBZ were typical of those from the more distal alteration facies of the LSZ, plotting as ripidolite to pycnochlorite; (iv) conversely, chlorite from the PHZ plot with Mg-Al-rich compositions (chlinochlore to penninite); and (v) carbonate species from each zone are also varied, with calcite occurring in each zone, in addition to dolomite and ankerite in the PHZ and WBZ, respectively. Lead isotope ratios for galena separates from the different various zones, when combined with data from older studies, tend to cluster into four distinctive fields. Overall, the data plot on a broad mixing line and indicate evolution in a relatively low-μ environment. Data from sulphide stringers in altered MBZ rocks, as well as from clastic sulphides (Sandfill prospect), plot in the Buchans ore field, as do the data for galena from altered rocks in the APZ. Samples from the Buchans East area are even more primitive than the Buchans ores, with lead from the PHZ plotting with the Connel Option prospect and data from the WBZ matching that of the Skidder prospect. A sample from a newly discovered debris flow-type sulphide occurrence (Middle Branch East) yields lead isotope ratios that are slightly more radiogenic than Buchans and plot with the Mary March alteration zone. Data within each cluster are interpreted to represent derivation from individual hydrothermal systems in which metals were derived from a common source.
Resumo:
The book is devoted to geology of the Philippine Sea floor. This region is studied most extensively among other marginal seas of the Pacific Ocean. Rocks of the sedimentary and basalt layers within this sea have been studied during five legs of D/S Glomar Challenger. International geological expedition on board R/V Dmitry Mendeleev carried out according to the Project ''Ophiolites of Continents and Comparable Rocks of the Ocean Floor''obtained unique collection of rocks from the second and third layers of the ocean crust in the Philippine Sea. The book provides detailed petrographic and geochemical description of igneous and sedimentary formations from the Philippine Sea and compares them with rocks of the continental ophiolite association. An analysis of structure and history of the ocean crust formation in the region is based on all known geological information. The main periods of tectonic movement activation and nature of their manifestations within the sea are shown.
Resumo:
Drilling a complete deep crustal section has been a primary yet elusive goal since the inception of scientific ocean drilling. In situ ocean crustal sections would contribute enormously to our understanding of the formation and subsequent evolution of the ocean crust, in particular the interplay between magmatic, hydrothermal, and tectonic processes. Ocean Drilling Program (ODP) Leg 206 was the first of a multileg project to drill an in situ crustal section that penetrated the gabbroic rocks of the Cocos plate (6°44.2'N, 91°56.1'W), which formed ~15 m.y. ago on the East Pacific Rise during a period of superfast spreading (>200 mm/yr) (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). During Leg 206, the upper 500 m of basement was cored in Holes 1256C and 1256D with moderate to high recovery rates. The igneous rocks recovered are predominantly thin (10 cm to 3 m) basalt flows separated by chilled margins. There are also several massive flows (>3 m thick), although their abundance decreases with depth in Hole 1256D, as well as minor pillow basalts, hyaloclastites, and rare dikes. The lavas have been slightly (<10%) altered by low-temperature hydrothermal fluids, which resulted in pervasive dark gray background alteration and precipitation of saponite, pyrite, silica, celadonite, and calcium carbonate veins. Here we present a geochemical analysis of the CaCO3 recovered from cores. The compositions of ridge flank fluids within superfast spreading crust will be determined from these data, following the approach of Hart et al. (1994, doi:10.1029/93JB02035), Yatabe et al. (2000, doi:10.2973/odp.proc.sr.168.003.2000), and Coggon et al. (2004, doi:10.1016/S0012-821X(03)00697-6).
Resumo:
Sm-Nd concentrations and Nd isotopes were investigated in the fine fraction of two Labrador Sea cores to reconstruct the deep circulation patterns through changes in sedimentary supply since the last glacial stage. Three sources are involved: the North American Shield, Palaeozoic rocks from northeastern Greenland, and mid-Atlantic volcanism. The variable input of these sources provides constraints on the relative sedimentary supply, in conjunction with inception of deep currents. During the last glacial stage a persistent but sluggish current occurred inside the Labrador Basin. An increasing discharge of volcanic material driven by the North East Atlantic Deep Water is documented since 14.3 kyr, signaling the setup of a modern-like deep circulation pattern throughout the Labrador, Irminger, and Iceland basins. During the last deglacial stage the isotopic record was punctually influenced by erosion processes related mainly to ice-sheet instabilities, especially 11.4, 10.2, and 9.2 kyr ago.
Resumo:
Carbonate veins hosted in ultramafic basement drilled at two sites in the Mid Atlantic Ridge 15°N area record two different stages of fluid-basement interaction. A first generation of carbonate veins consists of calcite and dolomite that formed syn- to postkinematically in tremolite-chlorite schists and serpentine schists that represent gently dipping large-offset faults. These veins formed at temperatures between 90 and 170 °C (oxygen isotope thermometry) and from fluids that show intense exchange of Sr and Li with the basement (87Sr/86Sr = 0.70387 to 0.70641, d7Li L-SVEC = + 3.3 to + 8.6 per mil). Carbon isotopic compositions range to high d13C PDB values (+ 8.7 per mil), indicating that methanogenesis took place at depth. The Sr-Li-C isotopic composition suggests temperatures of fluid-rock interaction that are much higher (T > 350-400 °C) than the temperatures of vein mineral precipitation inferred from oxygen isotopes. A possible explanation for this discrepancy is that fluids cooled conductively during upflow within the presumed detachment fault. Aragonite veins were formed during the last 130 kyrs at low-temperatures within the uplifted serpentinized peridotites. Chemical and isotopic data suggest that the aragonites precipitated from cold seawater, which underwent overall little exchange with the basement. Oxygen isotope compositions indicate an increase in formation temperature of the veins by 8-12 °C within the uppermost ~ 80 m of the subseafloor. This increase corresponds to a high regional geothermal gradient of 100-150 °C/km, characteristic of young lithosphere undergoing rapid uplift.
Resumo:
The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine-talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.
Resumo:
The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the "greenhouse" of the early Eocene to the "icehouse" of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive d13C excursion known as carbon maximum 6 ("M6"), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the d13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.
Resumo:
Polymineralic rocks undergo grain coarsening with increasing temperature in both static and deformational environments, as long as no mineral reactions occur. The grain coarsening in such rocks is complex because the different phases influence each other, and it is this interaction that controls the rate of grain coarsening of the entire aggregate. We present a mathematical approach to investigate coupled grain coarsening using a set of microstructural parameters, including grain size and volume fraction of both second phases and matrix mineral in combination with temperature information. Based on samples from polymineralic carbonate mylonites that were deformed at different temperatures, we demonstrate how the mathematical relation can be calibrated for this natural system. Using such data sets for other lithologies, grain coarsening maps can be generated, which allow the prediction of microstructural evolution in polymineralic rocks. Such predictions are crucial for all subdisciplines in the earth sciences that require fundamental knowledge about microstructural changes and rheology of an orogen at different depths, such as structural geology, geophysics, geodynamics, and metamorphic petrology.