980 resultados para Robot System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of an efficient collaborative multirobot framework that ensures the autonomy and the individualrequirements of the involved robots is a very challenging task. This requires designing an efficient platform for inter-robot communication. P2P is a good approach to achieve this goal. P2P aims at making the communication ubiquitous thereby crossing the communication boundary and has many attractive features to use it as a platform for collaborative multi-robot environments. In this work, we present the JXTA Overlay P2P system and its application for robot control. Since JXTAOverlay is able to overcome Firewalls, Routers and NATs, it is possible to control end-devices in a WAN without changing the network security policy. We used JXTA-Overlay for the control of robot motors. We evaluated the proposed system by many experiments and have shown that the proposed system has a good performance and can be used successfully for the control of robot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization, which is the ability of a mobile robot to estimate its position within its environment, is a key capability for autonomous operation of any mobile robot. This thesis presents a system for indoor coarse and global localization of a mobile robot based on visual information. The system is based on image matching and uses SIFT features as natural landmarks. Features extracted from training images arestored in a database for use in localization later. During localization an image of the scene is captured using the on-board camera of the robot, features are extracted from the image and the best match is searched from the database. Feature matching is done using the k-d tree algorithm. Experimental results showed that localization accuracy increases with the number of training features used in the training database, while, on the other hand, increasing number of features tended to have a negative impact on the computational time. For some parts of the environment the error rate was relatively high due to a strong correlation of features taken from those places across the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Main goal of this thesis was to implement a localization system which uses sonars and WLAN intensity maps to localize an indoor mobile robot. A probabilistic localization method, Monte Carlo Localization is used in localization. Also the theory behind probabilistic localization is explained. Two main problems in mobile robotics, path tracking and global localization, are solved in this thesis. Implemented system can achieve acceptable performance in path tracking. Global localization using WLAN received signal strength information is shown to provide good results, which can be used to localize the robot accurately, but also some bad results, which are no use when trying to localize the robot to the correct place. Main goal of solving ambiguity in office like environment is achieved in many test cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tässä työssä raportoidaan harjoitustyön kehittäminen ja toteuttaminen Aktiivisen- ja robottinäön kurssille. Harjoitustyössä suunnitellaan ja toteutetaan järjestelmä joka liikuttaa kappaleita robottikäsivarrella kolmiuloitteisessa avaruudessa. Kappaleidenpaikkojen määrittämiseen järjestelmä käyttää digitaalisia kuvia. Tässä työssä esiteltävässä harjoitustyötoteutuksessa käytettiin raja-arvoistusta HSV-väriavaruudessa kappaleiden segmentointiin kuvasta niiden värien perusteella. Segmentoinnin tuloksena saatavaa binäärikuvaa suodatettiin mediaanisuotimella kuvan häiriöiden poistamiseksi. Kappaleen paikkabinäärikuvassa määritettiin nimeämällä yhtenäisiä pikseliryhmiä yhtenäisen alueen nimeämismenetelmällä. Kappaleen paikaksi määritettiin suurimman nimetyn pikseliryhmän paikka. Kappaleiden paikat kuvassa yhdistettiin kolmiuloitteisiin koordinaatteihin kalibroidun kameran avulla. Järjestelmä liikutti kappaleita niiden arvioitujen kolmiuloitteisten paikkojen perusteella.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this master's thesis is to study robot programming using simulation software, and also how to embed the simulation software into company's own robot controlling software. The further goal is to study a new communication interface to the assembly line's components -more precisely how to connect the robot cell into this new communication system. Conveyor lines are already available where the conveyors use the new communication standard. The robot cell is not yet capable of communicating with to other devices using the new communication protocols. The main problem among robot manufacturers is that they all have their own communication systems and programming languages. There has not been any common programming language to program all the different robot manufacturers robots, until the RRS (Realistic Robot Simulation) standards were developed. The RRS - II makes it possible to create the robot programs in the simulation software and it gives a common user interface for different robot manufacturers robots. This thesis will present the RRS - II standard and the robot manufacturers situation for the RRS - II support. Thesis presents how the simulation software can be embedded into company's own robot controlling software and also how the robot cell can be connected to the CAMX (Computer Aided Manufacturing using XML) communication system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante toda la evolución de la tecnología, se han empleado aparatos interconexionados por cables. Los cables limitan la libertad de movimiento del usuario y pueden captar interferencias entre ellos si la red de cableado es elevada. Mientras avanzaba la tecnología inalámbrica, se ha ido adaptando al equipamiento electrónico a la vez que se iban haciendo cada vez más pequeños. Por esto, se impone la necesidad de utilizarlos como controles a distancia sin el empleo de cables debido a los inconvenientes que estos conllevan. El presente trabajo, pretende unificar tres tecnologías que pueden tener en el futuro una gran afinidad. · Dispositivos basados en el sistema Android. Desde sus inicios, han tenido una evolución meteórica. Se han ido haciendo cada vez más rápidos y mejores. · Sistemas inalámbricos. Los sistemas wifi o bluetooth, se han ido incorporando a nuestras vidas cada vez más y están prácticamente en cualquier aparato. · Robótica. Cualquier proceso de producción incorpora un robot. Son necesarios para hacer muchos trabajos que, aunque el hombre lo puede realizar, un robot reduce los tiempos y la peligrosidad de los procesos. Aunque las dos primeras tecnologías van unidas, ¿quién no tiene un teléfono con conexión wifi y bluetooth?, pocos diseños aúnan estos campos con la Robótica. El objetivo final de este trabajo es realizar una aplicación en Android para el control remoto de un robot, empleando el sistema de comunicación inalámbrico. La aplicación desarrollada, permite controlar el robot a conveniencia del usuario en un entorno táctil/teledirigido. Gracias a la utilización de simulador en ambos lenguajes (RAPID y Android), ha sido posible realizar la programación sin tener que estar presente ante el robot objeto de este trabajo. A través de su progreso, se ha ido evolucionando en la cantidad de datos enviados al robot y complejidad en su procesamiento, a la vez que se ha mejorado en la estética de la aplicación. Finalmente se usó la aplicación desarrollada con el robot, consiguiendo con éxito que realizara los movimientos que eran enviados con la tablet programada.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor-based robot control allows manipulation in dynamic environments with uncertainties. Vision is a versatile low-cost sensory modality, but low sample rate, high sensor delay and uncertain measurements limit its usability, especially in strongly dynamic environments. Force is a complementary sensory modality allowing accurate measurements of local object shape when a tooltip is in contact with the object. In multimodal sensor fusion, several sensors measuring different modalities are combined to give a more accurate estimate of the environment. As force and vision are fundamentally different sensory modalities not sharing a common representation, combining the information from these sensors is not straightforward. In this thesis, methods for fusing proprioception, force and vision together are proposed. Making assumptions of object shape and modeling the uncertainties of the sensors, the measurements can be fused together in an extended Kalman filter. The fusion of force and visual measurements makes it possible to estimate the pose of a moving target with an end-effector mounted moving camera at high rate and accuracy. The proposed approach takes the latency of the vision system into account explicitly, to provide high sample rate estimates. The estimates also allow a smooth transition from vision-based motion control to force control. The velocity of the end-effector can be controlled by estimating the distance to the target by vision and determining the velocity profile giving rapid approach and minimal force overshoot. Experiments with a 5-degree-of-freedom parallel hydraulic manipulator and a 6-degree-of-freedom serial manipulator show that integration of several sensor modalities can increase the accuracy of the measurements significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning from demonstration becomes increasingly popular as an efficient way of robot programming. Not only a scientific interest acts as an inspiration in this case but also the possibility of producing the machines that would find application in different areas of life: robots helping with daily routine at home, high performance automata in industries or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start with simple training exercises, combining them to form more difficult behavior. The objective of the Master’s thesis work was to study robot programming with visual input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning and generation. Assuming a movement to be a spring system influenced by an external force, making this system move, DMPs represent the motion as a set of non-linear differential equations. During the experiments the properties of DMP, such as temporal and spacial invariance, were examined. The effect of the DMP parameters, including spring coefficient, damping factor, temporal scaling, on the trajectory generated were studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes techniques for modeling, optimizing and simulating calibration processes of robots using off-line programming. The identification of geometric parameters of the nominal kinematic model is optimized using techniques of numerical optimization of the mathematical model. The simulation of the actual robot and the measurement system is achieved by introducing random errors representing their physical behavior and its statistical repeatability. An evaluation of the corrected nominal kinematic model brings about a clear perception of the influence of distinct variables involved in the process for a suitable planning, and indicates a considerable accuracy improvement when the optimized model is compared to the non-optimized one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new strategy to control an one-legged robot aiming to reduce the energy expended by the system. To validate this algorithm, a classic method as benchmark was used. This method has been extensively validated by simulations and experimental prototypes in the literature. For simplicity reasons, the work is restricted to the two dimensional case due to simplicity reasons. This new method is compared to the classic one with respect to performance and energy expended by the system. The model consists on a springy leg, a simple body, and an actuated hinge-type hip. The new control strategy is composed of three parts, considering the hopping height, the forward speed, and the body orientation separately. The method exploits the system passive dynamics, defined as non-forced response of the system. In this case, the model is modified adding a spring to the hip. The method defines a desired leg trajectory close to the passive hip swing movement. Simulation results for both methods are analyzed and compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a methodology for the development of Teleoperated Robotic Systems through the Internet. Initially, it is presented a bibliographical review of the Telerobotic systems that uses Internet as way of control. The methodology is implemented and tested through the development of two systems. The first is a manipulator with two degrees of freedom commanded remotely through the Internet denominated RobWebCam (http://www.graco.unb.br/robwebcam). The second is a system which teleoperates an ABB (Asea Brown Boveri) Industrial Robot of six degrees of freedom denominated RobWebLink (http://webrobot.graco.unb.br). RobWebCam is composed of a manipulator with two degrees of freedom, a video camera, Internet, computers and communication driver between the manipulator and the Unix system; and RobWebLink composed of the same components plus the Industrial Robot. With the use of this technology, it is possible to move far distant positioning objects minimizing transport costs, materials and people; acting in real time in the process that is wanted to be controller. This work demonstrates that the teleoperating via Internet of robotic systems and other equipments is viable, in spite of using rate transmission data with low bandwidth. Possible applications include remote surveillance, control and remote diagnosis and maintenance of machines and equipments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is presented a test bed applied to studies on dynamics, control, and navigation of mobile robots. A cargo ship scale model was chosen, which can be radio-controlled or operated autonomously through an embedded control system. A control program, which manages on board mission execution, is implemented on a microcontroller. Navigation is based on an electronic compass, which includes automatic compensation for pitch and roll motions. Heading control loop is based on this sensor, and on a rudder positioning system. A propulsion control system is also implemented. Typical manoeuvres as the turning test and "zig-zag", were implemented and tested. They are included on a manoeuvre library, and can be accessed independently or in combined modes. The embedded system is also in charge of signal acquisition and storing during the missions. It is possible to analyse experiments on identification of ship dynamics, control, and navigation, through the data transferred to a PC by serial communication. Navigation is going to be improved by including inertial sensors on board, and a DGPS. Preliminary tests are aimed to ship identification, and manoeuvrability, using free model tests. Future steps include extending this system for developing other mobile robots as, ROVs, AUVs, and aerial vehicles.